|

-~ A

. Form Approved
REPORT DOCUMENTATION PAGE OMB No. 07040128
ntor . 3G€ | NOUr DR reSpONYe, ¢ thE LM 10 reVIewsng INSTrUCTON, - - —
e e o I T e Sy L e e S Ly e s

and Repory, 1213 Jett
Dawn mqmo'u Swite 1204, Artington. VA T22004302, 41 10 the Office Of Management ana Sudget. Facerwors Aecuction Prorect (0704-0183), Wﬂw 0C 20303. e

1. AGENCY USE ONLY (Leave biank) 2. REPORT DATE 3. REPORT TYPE AND DATES COV
im0 7 ol 0ot = 3De, Pl
- ‘ . s. runoma ymm)
6. AUTHOR(S)

\\Qwo\ﬂ, L\s,/uuer (Zt ja»«?m»tc{!w& 9[7[“//ﬂ//?

C] ‘&0/16/6 MW/\ /2@0 AFOSR-TR-97
O\ o q
9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)

1. IV WIS IWVRITI 7 TWIWITYE WRIrey
. . AGENCY REPORT NUMBER
Alr Force Office Of Scientific Research
Aerospace & Materials Sciences Directorate if //,Zi7/49jj;9

110 Duncan Avenue, Suite B-115
Bolling AFB DC 20332-0001

11. SUPPLEMENTARY NOTES

h
122. DISTRIBUTION / AVAILABILITY STATEMENT 112k DISTRIBUTION CODE

APPROVED FOR PUBLIC RELEASE

DISTRIBUTION IS UNLIMITED 9970602 037

13. ABSTRACT (Maxsmum 200 wordas)

The overall objective of the research carried out over the last two vears was the develop-
ment of new algorithms for the efficient simulation of viscous compressible flows with
moving bodies in three dimensions using unstructured grids. The development was
based on current 3-D Euler/Navier-Stokes capabilities, and encompassed flow solvers,
grid generation. and the efficient use of emerging supercomputer hardware. The re-
search carried out over the last three y=ars significantly advanced the state of the art
in this arca of CFD. The particular topics are treated below in detail.

CF \b \/L S QU< ‘;—LL)_J UW_S \LfULV/\LMd m%@—_

17. SECURITY CLASSIFICATION |18. SECURITY CLASSIFICATION | 19. SECURITY CLASSIFICATION | 20. LIMITATION OF ABSTRACT
Of REPORT OF THIS PAGE OF ABSTRACT

: DTIC QUALPTY Igpgoras.3
NN TRAN N RN SSAN y -

Stancard Form 298 (Rev. 2-89)

]

AFOSR Final Report 2

FINAL REPORT: DECEMBER 1996

DEVELOPMENT AND APPLICATION OF NEW ALGORITHMS FOR
THE SIMULATION OF VISCOUS COMPRESSIBLE FLOWS
WITH MOVING BODIES IN THREE DIMENSIONS

Rainald Lohner, Chi Yang and Juan R. Cebral
GMU/CSI, The George Mason University
Fairfax, VA 22030-4444

SUMMARY

The overall objective of the research carried out over the last two years was the develop-
ment of new algorithms for the efficient simulation of viscous compressible flows with
moving bodies in three dimensions using unstructured grids. The development was
based on current 3-D Euler/Navier-Stokes capabilities, and encompassed flow solvers,
grid generation, and the efficient use of emerging supercomputer hardware. The re-
search carried out over the last three years significantly advanced the state of the art
in this area of CFD. The particular topics are treated below in detail.

AFOSR Final Report 3

1. FLOW SOLVERS

For the flow solvers, seven major developments took place over the course of this re-
search effort:

a) Implicit flow solvers;

b) Improved spatial discretization and boundary conditions;

c¢) Better mesh moving strategies;

d) Optimal, vectorized interpolation schemes;

e) Parallel h-refinement;

f) Link to CSD Codes strategy;

g) Validation studies; and

h) Store ejection from a hypersonic plane.

1.1 Implicit flow solvers

Implicit flow solvers are considered essential for the efficient simulation of viscous,
compressible, time-dependent flows. We developed a linearized implicit scheme that
uses a Generalized Minimal RESiduals algorithm in conjunction with incomplete lower-
upper (ILU) preconditioning for the solution of the Euler and Navier-Stokes equations.
The results were encouraging, showing that for Euler problems steady state results
could be achieved in less than 40 steps [1,2]. On the other hand, the storage costs and
the cost of getting close to the solution at the start of the iteration were considered
suboptimal. For technical details the reader is referred to [1], which is reproduced in
Appendix 1.

1.2 Improved spatial discretization and boundary conditions

Upon comparison of several high order schemes [3], improvements were made to a node-
centered upwind finite volume scheme for the solution of the Euler and Navier-Stokes
equations on unstructured meshes. The improvements included a more accurate bound-
ary integration procedure, which was consistent with the finite element approximation,
and a new reconstruction scheme based on the consistent mass matrix iteration. The
numerical results indicated that the present scheme significantly improved the quality
of numerical solutions with very little additional computational cost. For technical
details the reader is referred to [4], which is reproduced in Appendix 2.

1.3 Better mesh moving strategies

A Laplacian smoothing of the mesh velocities with variable diffusivity based on the
distance from moving bodies was developed [6-8]. This variable diffusivity enforces a
more uniform mesh velocity in the region close to the moving bodies. Given that in
most applications these are regions where small elements are located, the new proce-
dure decreases considerably element distortion, reducing the need for local or global
remeshing, and in some cases avoiding it alltogether. A hypersonic store release was
used to test the new algorithm. Numerical results obtained show that the new mesh

3

AFOSR Final Report 4

velocity smoothing leads to a much less deformed grid close to the moving missile. For
this case, the number of local remeshings required dropped by a factor of 1:4, leading
to considerable CPU savings in multiprocessor environment. Since then, this algorithm
has been used extensively for many applications ([8,11,12]). For technical details the
reader is referred to [7], which is reproduced in Appendix 3.

1.4 Optimal, vectorized interpolation schemes

When performing a local or global remeshing, the variables need to be interpolated
from the old grid to the new one. This is typically done using a scalar fast neighbour
search. We monitored this process on the CRAY-C90 and found, to our surprise, that
it took a considerable CPU time. Therefore, we vectorized the interpolation procedure.
The speed-ups obtained ranged from 1:4.5-1:5.0 on a 1-processor system as compared
to the best, optimized scalar code. This led to a considerable reduction of CPU times.
For technical details the reader is referred to [9], which is reproduced in Appendix 4.

1.5 Parallel H-Refinement

The classic h-refinement was extended to MIMD parallel machines. The main inno-
vation consisted of new data structures to handle the compatibility of refinement and
de-refinement cases allowed [10]. For this first demonstration, several important al-
gorithmic aspects, such as the subsequent parallel load balancing, were left out. The
basic idea, though, proved its worth. We feel that more work is required to complete
this effort.

1.6 Link to CSD Codes

In order to solve, in a cost-effective manner, fluid-structure interaction problems, a
loosely coupled algorithm to combine computational fluid dynamics (CFD) and com-
putational structural dynamics (CSD) was devised. In this algorithm, the structure is
used as the 'master-surface’ to define the extent of the fluid region, and the fluid is
used as the 'master-surface’ to define the loads. The transfer of loads, displacements,
and velocities is carried out via fast interpolation and projection algorithms. This
fluid-structure algorithm can be interpreted as an iterative solution to the fully cou-
pled, large matrix problem that results from the discretization of the complete problem.
The advantage of this new algorithm is that it allows a cost effective re-use of existing
software, with minimum amount of alterations required to account for the interaction
of the different media.

Several example runs using FEFLO96 as the CFD code, and DYNA3D as the CSD
code, demonstrate the effectiveness of the proposed methodology. For more details,
see the ATAA invited paper, Ref. [11], which is reproduced in Appendix 5, as well as
[12],{13]. The load transfer was made conservative, a characteristic that sets it apart
from all transfer algorithms used to date [13].

4

AFOSR Final Report 5

1.7 Validation studies

The efficiency and fidelity of the new Arbitrary Lagrangian-Eulerian (ALE) methodol-
ogy on unstructured grids was validated by two simulations. This validation effort was
part of an ongoing research effort to develop a cost-efficient and accurate numerical
methodology capable of simulating the motion of complex-geometry, three-dimensional
bodies embedded in external, temporally and spatially evolving flow-fields.

The first computation modeled the release of a finned store from a generic wing/pylon
configuration. The numerical Eulerian predictions were compared to the available
experimental data for both the wing and the separating store placed at three drop
distances. Very good agreement was obtained between the predicted and measured Cp
axial variation on the wing and along four angular cuts on the captive store.

The second simulation modeled multiple-store ejection from an F-117 fighter. The
efficiency of this simulation was aided tremendously by the improved local remeshing
methodology. Although the stores traveled a very long distance, only ten global remesh-
ings were required, compared to approximately sixty to eighty that would have been
required with the old methodology. The replacement of the expensive global remeshing,
is the key to the affordability of such a large-scale moving body simulations. For more

details, see Ref. [6,3].

1.8 Store ejection from a hypersonic plane

In order to investigate the interactions of missiles and planes during the store ejection
at hypersonic speeds, a numerical simulation model was built. This model separates
the whole ejection process into three stages. The first one is the steady motion part,
where the plane flies at the Mach number of 8 and there is no relative motions among
missles and the plane. The second one is the prescribed motion part, where the plane
continues flying at the same Mach number, and each missile moves in terms of its
prescribed relative motion. The third one is the free motion part, where the plane
continues flying at the same Mach number, and the motion of the missiles are solely
controled by aerodynamic forces. Three missiles with two in the front and one in the
back are used in the simulation. The missiles starts turning after they are released.

This simulation is very CPU intensive, and requires a lot of local and global remeshings.
"This simulation was made possible by the new ALE mesh velocity for moving body was
developed to reduce the development of the deformed grids close to the moving mis-
siles. This technique is described above in the section 1.3. Numerical results obtained
show that the number of local remeshings required dropped by a factor of 1:4, leading
to considerable CPU savings in a multiprocessor environment. The average element
number was about 750,000 during the run. A global remeshing was required about
every 2,000 timesteps. A film of this simulation was made on a SGI workstation and
delivered to the contract monitor.

P EE NS aE -

AFOSR Final Report 6

2. GRID GENERATION

In the area of grid generation, there were five major developments that took place
during the course of this research effort:

a) Improvements in robustness and speed;

b) Surface meshing from discrete data;

c) Element size attached to CAD-data;

d) Adaptive background grids; and

e) Navier-Stokes gridding.

2.1 Improvements in robustness and speed

At the beginning of this effort, the advancing front technique was still prone to occa-
sional failures, and relatively slow. With the advent of more powerful supercomputers,
the problem complexity increased, leading to larger grids. These large grids accen-
tuated the remaining problems in mesh generation. The robustness of the advancing
front technique was enhanced by only allowing the creation of well-formed elements,
additional neighbour checks, transformation to unit frame, checks for the usage of close
points and faces, and the introduction of additional distance criteria for front-crossing
tests. Speed was enhanced by storing (and interpolating) background grid and source
data not at the faces (as previously done), but at points. For large number of sources,
this can lead to speed-up factors of 1:5.

2.2 Surface meshing from discrete data

An advancing front surface gridding technique that operates on discretely defined faces
was developed [14,15]. This technique is based on three steps: surface feature recovery,
actual gridding, and surface recovery. The following aspects have to be considered
carefully in order to make the precedure reliable for complex geometries:

a) Recovery of surface features and discrete surface patches from the discrete data,

b) Filtering based on point and side normals to remove undesirable data close to

cusps and corners,

¢) Proper choice of host faces for ridges, and

d) Fast interpolation procedures suitable for complex geometry.
Several examples ranging from academic to industrial demonstrated the utility of the
developed procedure for ab initio surface meshing from discrete data, such as encoun-
tered when the surface description is already given as discrete, the improvement of
existing surface triangulations, as well as remeshing applications during runs exhibit-
ing significant change of domain. For technical details the reader is referred to [15],
which is reproduced in Appendix 6.

AFOSR Final Report 7

2.3 Element size attached to CAD-data

For problems that require gridding complex geometries, the specification of proper
element sizes can become a tedious process. Conventional background grids would
involve many tetrahedra, whose generation is a labor-intensive, tedious task. Point,
line, or surface-sources are not always appropriate either. A better way to address
these problems was devised by attaching element size directly to CAD-data. For many
problems, the smallest elements are required close to the boundary. Therefore, the next
element size may be obtained by multiplying it with a user-specified increase factor if
the element size for the points of the current front is stored. See Refs. [16-18] for more
details.

2.4 Adaptive background grids

In order to reduce the amount of user intervention to a minimum, we developed adap-
tive background grid refinement. We defined where to refine and how to refine. The
refinement was made in two passes: Pass 1: background grid adjustment, and Pass 2:
selection of elements to be refined. The new designed background grid adaption may
be used to automatically generate grids that represent the surface within a required or
prescribed accuracy. See Refs. [16-18] for more details.

-2.5 Navier-Stokes gridding

Creating highly stretched grids of acceptable quality for complex configurations has
been an outstanding goal for over two decades. We developed a technique that sepa-
rates the zones to be meshed into mainly isotropic (Euler region) and mainly anisotropic
(RANS region, close to walls/shear layers). The RANS regions are meshed first, by
growing prismatic elements from the boundary. These prismatic elements are sub-
divided into tetrahedra. The resulting mesh is analyzed for element shape and size.
Bad/large/distorted elements are removed accordingly. This results in a first front of
faces. The remainder of the domain is gridded using the traditional advancing front
technique. This procedure works well [16-19], but is not completely general. We have,
as of late, tried to mesh some very complex geometries with it, and have encountered
difficulties. Some possible solutions habe been proposed but not yet implemented. For
technical details the reader is referred to [18], which is reproduced in Appendix 7.

AFOSR Final Report 8

3. EFFICIENT USE OF SUPERCOMPUTING HARDWARE |

In order to keep up with the rapid advance of supercomputing hardware, all algorithms
used were examined with respect to their suitability for distributed memory parallel
machines. There were two major developments that took place during the course of
this research effort in this area:

a) Load balancing;

b) Timing and benchmarking.

3.1 Load balancing

A new load balancing scheme, based on a greedy algorithm with diffusion-based im-
provement was developed and tested. The algorithm allows for almost perfect (<1%)
load balance for arbitrary number of processors, load per element and mesh topology
in less than 20 passes over the mesh [20]. This is in contrast to popular recursive sub-
division techniques, where the number of processors must be a power of 2, and local
element imbalances are more difficult to account for.

3.2 Timings and benchmarking

The new load balancing scheme was used to split meshes and time them on several
parallel platforms, including the Intel Touchstone and Paragon, Thinking Machines
CM5, and IBM SP2. The timings were restricted to steady-state problems, i.e. no
moving/deforming meshes were present, and no h-refinement was used. For this class
of applications, the timings showed almost perfect speed-up, even for very large number
of processors (>380 for the Intel Touchstone). These results are very encouraging and
bode well for the future of the schemes used so far. Work is continuing in order to port
all aspects of the methodology to a distributed memory parallel hardware environment.

\/\/V

/\/

Computational mesh

Velocity contours by Green-Gauss

A

Velocity contours by consistent mass

Velocity contours by potential
Fig2a. mesh and resuits for channel problem

—e—o—o—o— Green-Gauss
—a—a—a—e— Lecast-squares
——t—a—e—e (Consistent-mass
1.3 -
2
% 1.2
>
1.1
1.0 A
0.9 4
008 -
0.7 4
0.6
0.0 1.0 2.0 3.0
X-coordinates

71.44 |

71.42

Fig.2b Comparison of velocity distribution

e el Green-Gauss
-——8—6—6-—e— Least-squares
—<—e—e—— (Consistent-mass

0.0 1.0

2.0 3.0
X-coordinates

Fig.2c Comparison of entropy distribution

N\ <IN
"“‘gﬂ

™ Av
2 SO
NAVAﬁhgqm;‘l‘gﬁmﬂﬂl“"""""‘"‘"‘i d
e i
Lo

Vavay. | <\

A AYAYATAATAAVAVAYLVarvav v A D G AVAV,
\VAYAVAVAVAVAYAY,V <

e B rairaniravyy, 4 Ve a7

™
LA
KK

5
A
X1
S
X}
O

a.
VaAvaval
YAV

ATAVAVAVAY W AVAVAVAVAVAVAVAYAS
OSAAROH0 ‘i.v.uu'l‘
Ve AT ATAVAYAVAVAVAVATAYAVAYS (g b
Yav, ": AVAVAVAVAVAVAVAYAVAVAVAY

X h‘n&uvgm"'ﬂ'ﬂ‘ ﬁ"'ﬂ L
M A ZAVAVAVAYAY S g VAV,
AvaT K AVAV A A ATATAYS yLviN

AN E 7B
Fig.3a Mesh for NACA0012 airfoil

v\\y me)

/
Fig.3c Pressure contours by least-squares

Fig.3/d Pressure contours by consistent mass

0.0 0.2 04 0.6 0.8 1.0

X-coordinates
Fig.3e Comparison of entropy distribution
1.5 -
1.0 4
054 \
a 0.0 ;
0.5
-1.0 4
-1.5
0.0 0.2 04 0.6 0.8 1.0
X-coordinaes
Fig.3f C, distribution by Green-Gauss
1.5 4
1.0 //——'—4
N / ‘ \
6‘ 0.0 -{/
0.5 |
-1.0 4
-1.5
0.0 0.2 04 0.6 0.8 1.0
. L . X-coordinates
Fig.3g C, distribution by least-squares
1.5 4
1.0 4
0.5 \
(‘3' 0.0 4
0.5 4
-1.0 4
-1.5

00 02 04 06 _08 10
. L. . . X-coordinates
Fig.3h C, distribution by consistent-mass

AFOSR Final Report 9

4. SUMMARY

The present research effort significantly advanced the state of the art in the simulation
of compressible viscous flows with moving bodies. A number of breakthroughs and
‘firsts’ were achieved, of which the following are considered the most important:

- The first simulation using an implicit scheme with unstructured grids with more
than a million elements [1];

- An optimal mesh velocity technique based on a nonlinear Laplacian that minimizes
remeshing requirements by an order of magnitude [7];

- The first vectorized, optimal-speed interpolation techniques for unstructured
grids [9];

- The first conservative load transfer algorithm for fluid-structure interaction simu-
lations [13];

- The first simulation of compressible flows with more than a hundred independently
moving bodies [8];

- The most complex fluid-structure interaction simulation to date [12]; and
- The first realistic CFD simulation with close to 400 processors [21].

More work is still required to transform these algorithms into daily production tools
that can be used effectively in the design and engineering process.

AFOSR Final Report 10

5. REFERENCES

We published extensively in the literature. Some of these papers are reproduced in the
sequel.

5.1 Flow Solvers, Implicit:

[1] H. Luo, J.D. Baum, R. Léhner and J. Cabello - Implicit Finite Element Schemes
and Boundary Conditions for Compressible Flows on Unstructured Grids; AIAA-
94-0816 (1994).

[2] J. Cabello, K. Morgan, R. Lohner, H. Luo and J.D. Baum - An Implicit Solver for
Laminar Compressible Flows on Unstructured Grids; AIAA-95-0344 (1995).

5.2 Flow Solvers. Discretization Schemes:

[3] J. Cabello, K. Morgan and R. Lohner - A Comparison of Higher Order Schemes
Used in a Finite Volume Solver for Unstructured Grids; AIAA-94-2293 (1994).

[4] H. Luo, J.D. Baum and R. Lohner - An Improved Finite Volume Scheme for
Compressible Flows on Unstructured Grids; ATAA-95-0348 (1995).

5.3 Flow Solvers, ALE Methodology:

[6] J.D. Baum, H. Luo and R. Lohner - A New ALE Adaptive Unstructured Method-
ology for the Simulation of Moving Bodies; AIAA-94-0414 (1994).

[6] J.D. Baum, H. Luo and R. Loéhner - Validation of a New ALE, Adaptive Unstruc-
tured Moving Body Methodology for Multi-Store Ejection Simulations; AIAA-95-
1792 (1995).

[7] R. Lohner and Chi Yang - Improved ALE Mesh Velocities for Moving Bodies;
Comm. Num. Meth. Eng. 12, 599-608 (1996).

[8] R. Lohner, Chi Yang and J.D. Baum - Rigid and Flexible Store Separation Sim-
ulations Using Adaptive Unstructured Grid Technologies; pp.1-29 in Proc. Ist
AFOSR Conf. on Dynamic Motion CFD (L. Sakell and D.D. Knight eds.), Rut-
gers University, New Brunswick, New Jersey, June (1996).

5.4 Flow Solvers, Reinterpolation:

[9] R. Lohner - Robust, Vectorized Search Algorithms for Interpolation on Unstruc-
tured Grids; J. Comp. Phys. 118, 380-387 (1995).

10

AFOSR Final Report 11

5.5 Flow Solvers. H-Refinement:

[10] A. Shostko and R. Lohner - Parallel 3-D H-Refinement; AIAA-95-1662-CP: (1995).
5.6 Link to CSD:

[11] R. Lohner, C. Yang, J. Cebral, J.D. Baum, H. Luo, D. Pelessone and C. Charman
- Fluid-Structure Interaction Using a Loose Coupling Algorithm and Adaptive
Unstructured Grids; AIAA-95-2259 [Invited] (1995).

[12] J.D. Baum, H. Luo, R. Lohner, C. Yang, D. Pelessone and C. Charman - A Cou-
pled Fluid/Structure Modeling of Shock Interaction with a Truck; AIAA-96-0795
(1996).

[13] J.R. Cebral and R. Léhner - Conservative Load Projection and Tracking for Fluid-
Structure Problems; AIAA-96-0797 (1996).

5.7 Grid Generation:

[14] R. Lohner - Surface Meshing from Discrete Data; Paper presented at the 4th

International Meshing Roundtable, Albuquerque, NM, October (1995).
[15] R. Lohner - Regridding Surface Triangulations; J. Comp. Phys. 126, 1-10 (1996).

[16] R. Lohner - Extending the Range of Applicability and Automation of the Advanc-
ing Front Grid Generation Technique; AIAA-96-0033 (1996).

[17] R. Lohner - Extensions and Improvements of the Advancing Front Grid Generation
Technique; Comm. Num. Meth. Eng. 12, 683-702 (1996).

[18] R. Lohner - Progress in Grid Generation via the Advancing Front Technique;
Engineering with Computers 12, 186-210 (1996).

[19] R. Lohner - Matching Semi-Structured and Unstructured Grids for Navier-Stokes
Calculations; AIAA-93-3348-CP (1993).

5.8 Supercomputing

[20] R. Lohner and R. Ramamurti - A Load Balancing Algorithm for Unstructured
Grids; Comp. Fluid Dyn. 5, 39-58 (1995).

[21] R. Ramamurti and R. Lohner - A Parallel Implicit Incompressible Flow Solver
Using Unstructured Meshes; Computers and Fluids 5, 119-132 (1996).

11

AFOSR Final Report 12

“APPENDIX 1: IMPLICIT FLOW SOLVERS

12

AlAA 94-0816

Implicit Schemes and Boundary
Conditions for Compressible Flows on
Unstructured Meshes

Hong Luo*, Joseph D. Baum®*, Rainald
Lohner**, and Jean Cabello**

* Science Applications International

Corporation,
McLean, VA 22102

** George Mason University
Fairfax, VA 22030

32nd Aerospace Sciences
Meeting & Exhibit
January 10-13, 1994 / Reno, NV

For permission to copy or republish, contact the American Institute of Aeronautics and Astronautics
370 L'Enfant Promenade, S.W., Washington, D.C. 20024

where V; is the volume of the dual mesh cell (equiva-
lent to the lumped mass matrix in the finite element),
R; is the right-hand-side residual and equals to zero
for a steady state solution. The Euler implicit dis-
cretization and linearization of equation (4.1) in time
leads to a system of linear equations

V 8R

— + =)*AU*=R" 4.2

(e tar) Y (“2)

where At is the time increment, and AU™ the dif-

ference of unknown vector between time levels n and
n+1,ie.,

AU = U™ —y” . (4.3)

Note that as At tends to infinity, the scheme
reduces to standard Newton’s method for solving a
system of nonlinear equations. Newton’s method is
known to have quadratic convergence property. The
term represents symbolically the Jacobian ma-

trix. It involves the linearization of the numerical
flux vectors. For example, considering Roe’s approx-
imation of the inviscid flux vector:

Rino(Us, Uy, m) =3(F(Us,m) + F(Uj,m)
~ 1 AD) | W -0, (44)

the Jacobian terms -6—5%“ and %ﬂ" must be de-
i j

rived. The exact Jacobian linearization of Roe’s flux
function is possible, but extremely expensive to evalu-
ate. A good approximation, which is computationally
efficient, is to neglect the terms arising from differen-
tiation of | A(U) | in the linearization process. This
leads to the following approximate linearization

Do _ JOE0) 214D

= S(AWU)+ | AD)) (4.5)
aRdrw_laF(U’n)_l 7
au; 2 a(;j 2 14O

= S(AWU~ | AD) . (4.6)

The justification of this approximation can be found
in reference!!. In addition, in order to reduce the
number of non-zero elements in the matrix and to
simplify the linearization, only a first order represen-
tation of the inviscid flux terms is Iinearizg . This
results in the graph of the sparse matrix U being

identical to the graph of the supporting unstructured
mesh. The penalty in making these approximations
in the linearization process is that the quadratic con-
vergence of Newton’s method can never be achieved
because of the mismatch between the right and left
hand side operators in equation (4.2). The viscous

terms are linearized in a straightforward manner, ex-
cept that the viscosity coefficient is not linearized.
Equation (4.2) represents a system of linear
simultaneous algebraic equations and needs to be
solved at each time step. This system of equations can
be solved by direct matrix inversion; however, this re-
quires considerable computer memory and CPU time.
Iterative methods are attractive due to their compu-
tational efficiency and relatively low memory require-
ments. In this work, the system of linear equations
is solved by the Generalized Minimal RESidual (GM-
RES) method of Saad and Schultz!2. It is a gener-
alization of conjugate gradient method for solving a

linear system _
Az =1t 4.7

where the coefficient matrix is not symmetric and/or
positive definite. The use of GMRES combined
with different preconditioning techniques is becoming
widespread in the CFD community for the solution
of the Euler and Navier-Stokes equations®19:13, GM-
RES minimizes the norm of the computed residual
vector ™ = b — Az™ over the subspace spanned by a
certain number of orthogonal search directions. GM-
RES by itself is not a very efficient scheme. It must
be augmented by a preconditioner to produce accept-
able efficiency. It is well known that the speed of
convergence of an iterative algorithm for a linear sys-
tem depends on the condition number of the matrix
A. The preconditioning technique involves solving an
equivalent preconditioned linear system

Az =1} (4.8)

igstead of the original system (4.7), in the hope that
A is well conditioned. Three forms of preconditioners
can be defined as following

P 'Az =P, (4.9)
AQQ lz=b, (4.10)

and
P-lAQQ 'z =P . (4.11)

The systems of linear equations in equations (4.9),
(4.10), and (4.11) are referred to, respectively, as left-
preconditioned, right-preconditioned, and symmetric-
preconditioned, and P and Q as left and right precon-
ditioners.

The motivation for preconditioning is twofold: a)
reduce the computational effort required to solve the
linearized system of equations at each time-step, and
b) reduce the total number of time-steps required to
obtain a steady state solution. Preconditioning will
be cost-effective only if the additional computational
work incurred for each sub-iteration is compensated
for by a reduction in the total number of iterations
to convergence, so that the total cost of solving the
overall non-linear system is reduced. In the present
work, a preconditioner derived from the block incom-
plete lower-upper factorization of matrix A has been
found to be an effective preconditioner and has been

used throughout. All left, right, and symmetric pre-
conditionings have been implemented.

Grid renumbering is also used to improve the
convergence of the GMRES. Ordering of nodes in the
grid has been found to affect the convergence rate of
iterative solvers. Following reference”, the mesh is
renumbered according to the Reverse Cuthill-McKee
method. : v
Using an edge-based data structure, the im-
plicit coefficient matrix is stored in upper, lower,
and diagonal matrix forms. It requires a storage of
2 x nedge X neqns X negns + npoin X neqns X neqns,
where npoin is the number of grid points, neqns num-
ber of unknown variables, and nedge number of edges.
The same amount of memory requirements is needed
to store the preconditioning matrix. In addition, a
storage corresponding to npoin+(2x nedge+npoin) is
required for the two index arrays, which are necessary
for the factorization of ILU. The need for additional
storage associated with the GMRES algorithm is an
array of size (k + 2) x negns x npoin, where k is the
number of search directions. For k = 10, this results
in about 775 * npoin storage locations in 3D. Com-
pared with 95 * npoin storage locations needed by its
explicit counterpart, the present implicit scheme re-
quires about 8 times more memory.

5. IMPLICIT BOUNDARY CONDITIONS

The results of this investigation indicate that the
treatment of boundary conditions is crucial to the suc-
cess of an implicit scheme. When boundary condi-
tions are treated explicitly, only a very limited CFL
number can be used, resulting in an inefficient algo-
rithm. In order for the implicit scheme to be stable
at high CFL numbers, boundary conditions must be
incorporated implicitly. In the present work, this is
realized by imposing the boundary conditions during
the evaluation of flux at boundary surfaces, and then
by linearizing these boundary conditions and adding
them to the implicit coefficient matrix. Two basic
types of boundary conditions are defined: a solid wall
boundary condition and inflow and outflow boundary
conditions. :

On the solid wall, the slip boundary conditions
are assumed for inviscid flow. The tangency flow con-
dition is implemented by imposing no flux through the
wall, so that the inviscid flux normal to the boundary
face is

0

. pnz
/ F’n,-dl"‘:/ pny | dl.
8cinr, 9CinTw | pn,

0

(5.1)

For viscous flow, the no-slip boundary condition is
assumed and the given wall temperature is imposed
strongly.

At inflow and outflow boundaries, the flow is sup-
posed to be advection dominated, and a precise set of
compatible exterior data has to be selected, depend-
ing on the flow regime and the velocity direction. For

this purpose, a plus-minus flux splitting is applied to
exterior and interior values in reference®. More pre-
cisely, the inviscid flux at the boundaries is evaluated
using Steger-Warming’s flux vector splitting

/ Fin;dl' =
8CINlee

/ (A (Ui, n)Ui + A~ (Uoo, 1)Uso)dT" (5.2)
8C Nl

It is worth noting that the treatment of boundary
conditions implies that for supersonic inflow, the flux
imposed is computed from the fluid state at the in-
finity, and for supersonic outflow, the flux imposed
is computed from the state variables at the cell I.
Clearly, such treatment of boundary conditions is con-
sistent with the mathematical theory of characteris-
tics and correctly accounts for wave propagation in
the far field. However, when this boundary condition
was applied to the present implicit scheme, the con-
vergence history was not satisfactory for some test
cases. Hence, Steger-Warming’s flux vector splitting
is replaced by Roe’s flux-difference splitting in this
work. This leads to

j 1
/;C:nl‘m FJ anF - \/éwmr‘,,(i(F(U" ﬂ) + F(Uoo’ 71))
- % [AD) | (U = Us))dl . (5.3)

This procedure provides a boundary point treatment
that is completely compatible and consistent with the
interior point differencing scheme. The numerical ex-
perience indicates that this treatment of boundary
conditions gives very satisfactory convergence.

All boundary conditions are then linearized con-
sistently, and are included in the left-hand-side ma-
trix. For viscous flow, as Dirichlet boundary condi-
tions are imposed on the solid wall, both left-hand-
side matrix and right-hand-side vector have to be
modified in order for the Dirichlet boundary condi-
tions to be satisfied.

It is worth noting that the boundary conditions
are imposed on the boundary faces, not at the bound-
ary points. Therefore, this avoids ambiguity for a
boundary point that lies on a junction between two
boundary condition types.

6. NUMERICAL EXAMPLES

A variety of test cases for a wide range of flow
conditions, from subsonic to supersonic, in both 2D
and 3D, is selected to demonstrate the effectiveness
of the present implicit scheme over its explicit coun-
terpart. All of the computations are done using a
non-restarted GMRES with a left block ILU precon-
ditioner, unless otherwise stated. The solution tol-
erance for GMRES is set to 0.1 with 10 search di-
rections. All computations were initiated with the
freestream flow as the initial guess. It has been found
necessary to use a small CFL number when an initial
guess is taken to be the free stream condition. The
start-up CFL number was around 2 and was allowed

to increase inversely proportional to the L, norm of
the residual, up to some maximum CFL number.

A standard and widely accepted approach to
judge the performance of different numerical schemes
is to determine the amount of computational or CPU
time required by the particular scheme to reduce the
L, norm of the residual vector to a certain order of
magnitude. However, the CPU time of an algorithm
can be heavily influenced by the skills of the indi-
vidual programmer. Efficient implementations often
require investments in ’real’ time and patience by the
programmer. In addition, an implementation on one
particular machine may run faster or slower on an-
other machine, i.e., the CPU time may be machine
dependent. Therefore, in this research, the numeri-
cal schemes performance was compared based on the
number of time steps required to reduce the Ly norm
of the residual vector (normalized by the norm of
the initial residual vector) of the problem by certain
orders-of-magnitude.

Test case 1. 2D inviscid flow past NACA0012 airfoil

The problem under consideration is an inviscid
transonic flow around a NACAO0012 airfoil with a
freestream Mach number of 0.85 and an angle of at-
tack of 1 degree. This is a classical and significant test
problem for Euler solvers. The mesh, consisting of
6,397 elements and 3,274 is shown in Fig. 1.a. Fig.1b
displays the computed pressure contours in the flow
field. The pressure coefficient distribution on the air-
foil is shown in Fig.1lc. Fig.1d displays a comparison
of convergence histories among the explicit scheme,
the explicit scheme with implicit residual smoothing,
and the implicit scheme with ILU preconditioner, re-
spectively. The explicit scheme results were obtained
using two stage Runge-Kutta scheme and a CFL num-
ber of 0.8. The explicit scheme with implicit resid-
ual smoothing uses three stage Runge-Kutta scheme
and a CFL number of 4.0. The implicit scheme re-
sults were obtained using a maximum CFL number
of 10,000.

Test case 2. 2D viscous flow past a flat plate

This test case involves a laminar flow past a flat
plate at a Mach number of 0.5 and a chord Reynolds
number of 10,000. The mesh used in the computation
is shown in Figure 2a. It contains 2,604 elements,
1,376 points, and 146 boundary points. The com-
puted Mach number contours in the flow field are
depicted in figure 2b, where the development of a
boundary layer can be clearly observed. Figure 2c
shows the comparison of the Blasius velocity profile
and the computed velocity profiles as scaled by the
Blasius similarity law at different chord length down-
stream of the leading edge. The computed results
indicate that the similarity solution for a flat plate
boundary layer is correctly obtained and the solution
agrees well with the Blasius solution. Finally, Fig-
ure 2d shows a comparison of convergence histories
between the explicit and implicit schemes. The ex-
plicit scheme results were obtained using three stage
Runge-Kutta scheme with implicit residual smooth-
ing and a CFL number of 4.0. The implicit scheme

results were obtained using a maximum CFL number
of 1,000.

Test case 3. 2D viscous flow past NACA0012 airfoil

The third test case consists of a supersonic low-
Reynolds-number flow where the Mach number is 2,
the angle of attack is 10 deg, and the Reynolds num-
ber is 106. This represents a standard test case, which
has received wide attention in the literature and for
which experimental data is available. The mesh, con-
taining 29,386 elements, 14,878 points and 370 bound-
ary points after two levels of refinement, is shown in
Fig. 3a. The density contours of the computed flow
field are depicted in Fig. 3b, where a strong bow
shock is observed. The pressure coefficient distribu-
tion on the airfoil is shown in Fig.3¢c. The convergence
history is shown in Fig. 3d, where only 60 time steps
were required for the residual to drop about 4 orders
of magnitude, even with two levels of refinement. The
implicit scheme results were obtained using a maxi-
mum CFL number of 1,000.

Test case 4. 3D inviscid flow in a channel

The fourth test case is the well known Ni’s test
case: an inviscid flow in a channel with a 10% thick
circular bump on the bottom. Inlet Mach number was
0.675. Thisis a 3D simuliation of a 2D flow. The mesh,
which contains 13,891 grid points, 68,097 elements
and 4,442 boundary points, is depicted in Fig.4a.
Fig.4b displays the computed pressure contours on
the surfaces. The Mach number distribution on lower
wall is shown in Fig.4c. Fig.4d displays a comparison
of convergence histories between the explicit scheme
and the implicit scheme with left, right, and sym-
metric ILU preconditioner, respectively. The explicit
scheme results were obtained using three stage Runge-
Kutta scheme with implicit residual smoothing and a
CFL number of 4. The implicit scheme results were
obtained using a CFL number of 100,000. Contrary to
the results obtained in reference!?, the left, right and
symmetric preconditioners performed equally well.

Test case 5. 3D inviscid flow past a F-117 fighter

The last test case involves a 3D simulation of an
inviscid flow past a complete f-117 stealth fighter at
a Mach number of 0.8 and an angle of attack of 5 de-
grees. The mesh, which contains 509,853 elements,
92,854 points, and 12,657 boundary points for the
half-span airplane, is shown in Fig.5a. The computed
Mach number contours in the flow field are depicted
in Fig.5b. For the purpose of comparison, the compu-
tation was performed using both explicit and implicit
schemes on the Cray-M90 computer at the Cray Re-
search Inc. The solution was converged to engineer-
ing accuracy (a decrease of a four order-of-magnitude
in the Ly norm of the density residual). The ex-
plicit scheme solution was obtained using three stage
Runge-Kutta scheme with implicit residual smooth-
ing and a CFL number of 4. The implicit scheme
results were obtained using a maximum CFL number
of 10,000. Comparisons of their performance in terms
of time steps, CPU time, and storage requirements

are presented in Table 1 below.

Table 1. Time step, CPU, and Storage requirements

Explicit Implicit
Time steps 1400 35
CPU 16 hours 3.5 hours
Storage 50 Mwords 165 Mwords

An analysis of these results demonstrates that
the implicit scheme runs approximately 4 times faster
than its explicit counterpart, while requiring about
3.5 times more memory. It must be remarked that
the code includes all extra arrays required for ALE
formulation, H-refinement, and remeshing.

7. CONCLUSIONS

An implicit algorithm has been developed for the
solution of the compressible Euler and Navier-Stokes
equations on unstructured meshes. The treatment of
implicit boundary conditions has been found to be
critical to the success of an implicit scheme. The
numerical results have shown that the present im-
plicit scheme converges to the asymptotic steady state
much faster than its explicit counterpart. Overall
speed-up factors of up to 5 for the Euler equations
and at least one order of magnitude for the Navier-
Stokes equations are found in the examples shown.

8. ACKNOWLEDGMENTS

This research was sponsored by the Defense Nu-
clear Agency. Dr. Michael E. Giltrud served as the
technical program monitor. Partial funding for the
last two authors was also provided by the Air Force
Office of Scientific Research. Dr. Leconidas Sakell
served as the technical monitor.

REFERENCES

1Luo, H., Baum, J. D., Lohner, R., and Cabello,
J., “Adaptive Edge-Based Finite Element Schemes for
the Euler and Navier-Stokes Equations on Unstruc-
tured meshes,” AIAA Paper 93-0336, 1993.

2Luo, H., Baum, J. D., and, Lohner, R., “Nu-
merical Solution of the Euler Equations for Complex

Aerodynamic Configurations Using an Edge-Based
Finite Element Schemes,” AIAA Paper 93-2933, 1993.

3Peraire, J., Peiro, J., and Morgan, K., “A 3D
Finite element Multigrid Solver for the Euler Equa-
tions,” AIAA Paper 1992-0449, 1992.

4Barth, T. J., “Numerical Aspects of Comput-
ing Viscous High Reynolds Number Flow on Unstruc-
tured Meshes,” AIAA Paper 1991-0721, 1991.

SBilley, V., Périaux, J., Perrier, P., and Stoufflet,
B., “2-D and 3-D Euler Computations with Finite El-
ement Methods in Aerodynamic,” International Con-
ference on Hypersonic Problems, Saint-Etienne, Jan.
13-17, 1986.

8Venkatakrishnan, V., and Mavriplis, D. J., “Im-
plicit Solvers for Unstructured meshes,” AIAA Paper
91-1537, 1991.

"Whitaker, D. L., “Solution Algorithms for the
Two-Dimensional Euler Equations on Unstructured
Meshes,” AIAA Paper 90-0697, 1990.

8Hassan, O., Morgan, K., and Peraire, J.,
“An Implicit Finite-Element Method for High Speed
Flows,” AIAA Paper 90-0402, 1990.

9Batina, J. T., “Implicit Flux-Split Euler
Schemes for Unsteady Aerodynamic Analysis Involv-
ing Unstructured Meshes,” AIAA Paper 90-0936,
1990.

10yenkatakrishnan, V., “Preconditioned Conju-
gate Gradient Methods for the Compressible Navier-
Stokes Equations,” AIAA Paper 90-0586, 1990.

UBarth, T. J., “Aspects of Unstructured Grids
and Finite-Volume Solvers for the Euler and Navier-
Stokes equations,” AGARD-R-787, May 1992.

1283ad, Y., and Schultz, M. H., “GMRES: a
Generalized Minimal Residual Algorithm for Solving
nonsymmetric linear systems,” SIAM J. Sci. Stat.
Comp., Vol. 7, No 3 (1988), pp 89-105.

13Ajmani, K., Ng, W. F., and Liou, M. S., “Pre-
conditioned Conjugate-Gradient Methods for Low-
Speed Flow Calculations,” AIAA Paper 1993-0881,
1993.

Fig.1a Mesh Used for Computing inviscid Flow Fig.1b Computed Pressure Contours
past a NACA(012 airfoil; nelem=6,397, npoin=3,274 in the Flow Field; M, = 0.85,a = 1.0

Pressure coefficient Convergence history

M -
& 2
Q &
e
& —eme—a—o— Explicit(CFLm0.8)
= —o—o—a—c— Explicit+].R.S(CFLw4.0)
Implicit(CFL=10.000)
1.0 4 f
|
!
\
00 - 40
5.0 ~
6.0
-10 4
7.0 -4
-80 <
220 -9.0 -
0.0 0.1 0.2 03 04 0.5 0.6 0.7 0.8 0.9 1.0 1.1 0.0 1000.0 2000.0 3000.0 4000.0 $000.0 6000.0 7000.0
X-coordinates n'me_step
Fig.1c Computed C, Distribution Fig.1d Comparison of convergence history
on the airfoil; Mo, = 0.85,0 = 1.0 between Explicit and Implicit Schemes

ZANZADN

S
/NN
N4

Fig.2a Mesh Used for Computing Viscous Flow
past a Flat Plate; nelem=2,604, npoin=1,376

wu_infty_exact
0.6239E-01
0.1014E+00
0.1522E+00
0.2183E+00
0.3044E+00
0.4165E+400
0.5625E+00

0.5

Ll

0.0
0.0 : 20 3.0 40 5.0 6.0 70 8.0
eta-coordinates

Fig.2c Streamwise Velocity Profiles past
a Flat Plate; M, = 0.5, Re=10,000

log(Res)

-

Fig.2b Computed Mach Number Contours past l

a Flat Plate; Mo, = 0.5, Re=10,000

Convergence history

Fig.2d Comparison of convergence history
between Explicit and Implicit Schemes

fime

0.0 -1\
—e—¢—e—e— Explicit! CFL=4.0)

10 4 A —o~6—e—o— Implxit(CFLx=1,000)
-20 wm\"\e\& !
-3.0 H

p:

g
4.0 —‘a
-5.0

0.0 500.0 1000.0 1500.0 2000.0 2500.0

D

]
i
1
1
i
i

|

ANAA

~.
N,

Fig.3a Final Adapted Mesh past a NACA0012
aitfoil; melem=29,386, npoin=14,878

Fig.3b Computed Density Contours past

NNKY

a NACAOQ012 airfoil; Mw = 2,a = 10,Re=106

-Cp

log(Res)

Pressure Coefficient Distribution

0.0 !
-10 4
20.
.30 ‘ . :
0.0 0.1 0.2 0.3 04 0s 0.6 0.7 08 09 1.0 11
X-coordinates
Fig.3¢c Computed C, Distribution on the
airfoil; M, = 2, = 10,Re=106
o Convergence history
00 Hq K
"oed 3
i
-1.0 -
|]
I
i
| |
| |
-20 4 ! 4
| 1
I \5 :
\\ :’ \w .: Q\
{ ‘ ;
-3.0 x =-_ ! \'9‘
\\N: N
! e,
b
A
-40 .
0.0 10.0 20.0 300 40.0 500 6.0 0.0
time-steps

Fig.3d Convergence History
for the Implicit Scheme

()
2y
o

{

!

Y

ZS
A

o
TETaY
=5

I

\“

£

X

2=

VAV avAVAYA
§ﬁ@ﬁ;ﬁuuﬂﬂ'm’e'ﬂ5#5

\W‘VAVAVAVAVA'A"""" A ATAY
\ v

W
T
\

avava¥ata¥)
WAVAY S LWAVAVAVAVAAV,Y,
':‘vﬂﬁ#‘uuvm'mv‘r
NSO
KN FRANNGA

IS AT G ATavATaT, vy,
INRINDOAAAIAN
5’1) "VA'# XA
¥ 5.0 :""""‘V

\/
1,

v

0y
f)

</

(-

s:v:’
SESE=STS M
S AVAVAVALL A TAYaAYs
T TANNAN

VAV

AVAa
AV,
XK
6

AV
3N

VAV,
2

AV
N/

AN
A

V.
AN
YAy,

AN
N/

\VAVAVAY
A'%'
AVAV 4
A
Vay,

N
A
%V
v,

AV,
Ay,

Vay,
)
23

AV,
A,

AV,
RSPOE
AVaY,

K]
<]
L
5
»
S
I
S
<
S
I
AV,
VAW,
AN
\VAY,

AVAVAYAY,

YAYaYa¥i
\vAVAvATATASAT T it

)
O
s TAvAY,
AV}
AVay,
O
av 3 YAy,

ava
vav,

aT4val
avavavy
vav,

Fig.4a Surface Mesh of Triangles for the Channel
melem=68,097, npoin=13,891, nboun=4,442

Fig.4b Computed Pressure Contours in the Channel
at Mo = 0.675,a = 0°

10

.

EM

g7 -

- /

5 !

§1.2- ;l
1.0 4 ;
038 | ‘

s
»./‘"/

-
———
o

04
0.0

2.0

Fig.4c Computed Mach Number Distribution on a
lower corner line at M, = 0.675,a = 0°

0
0.0 200.0 400.0 600.0 800.0 1000.0

time-steps

Fig.dd Comparison of Convergence History for
Explicit, Left, Right, and Symmetric Precondioners

Fig.5, Surface Mesh of Tri
nelem=509,853

30gles for the F-117 Stealth Fighter
, npoin=92,854, nboun=12,65?

= e

AFOSR Final Report

APPENDIX 2: IMPROVED SPATIAL DISCRETIZATION

13

13

¥

ATAA 95-0348

An Improved Finite Volume Scheme for

Compressible Flows on Unstructured Grids

Hong Luo*, Joseph D. Baum*, and

Rainald Lohner**

* Science Applications International Corporation,
McLean, VA 22102

** George Mason University,
Fairfax, VA 22030

33rd Aerospace Sciences
Meeting and Exhibit
January 9-12, 1995 / Reno, NV

For permission to copy or republish, contact the American instituts of Aeronautics and Astronautics
370 L'Enfant Promenade, S.W., Washington, D.C. 20024

R

AN IMPROVED FINITE VOLUME SCHEME
FOR COMPRESSIBLE FLOWS ON UNSTRUCTURED GRIDS

Hong Luo and Joseph D. Baum

Science Applications International Corporation
1710 Goodridge Drive, MS 2-3-1
McLean, VA 22102, USA

and

Rainald Lohner
Institute for Computational Sciences and Informatics
George Mason University, Fairfax, VA 22030, USA

ABSTRACT

This paper describes recent improvements to a
node-centered upwind finite volume scheme for the
solution of the compressible Euler and Navier-Stokes
equations on unstructured meshes. The improve-
ments include a more accurate boundary integration
procedure, which is consistent with the finite element
approximation, and a new reconstruction scheme
based on the consistent mass matrix iteration. Sev-
eral numerical results are presented to demonstrate
the performance of the proposed improvements. The
numerical results indicate that the present scheme sig-
nificantly improves the quality of numerical solutions
with very little additional computational cost.

I. INTRODUCTION

The use of unstructured meshes for com-
putational fluid dynamics problems has become
widespread due to their ability to discretize arbitrar-
ily complex geometries and due to the ease of adap-
tion in enhancing the solution accuracy and efficiency
through the use of adaptive refinement techniques.
In recent years, remarkable progress has been made
in the development of upwind algorithms for the so-
lution of the Euler and Navier-Stokes equations on
unstructured meshes!=7. A significant advantage of
any upwind discretization is that it is naturally dissi-
pative as compared with central-difference discretiza-
tions, and consequently does not require any problem-
dependent parameters to adjust.

The present authors have developed an upwind
finite element scheme for the solution of the com-
pressible Euler and Navier-Stokes equations!=2. It
has been found that the finite element scheme gives
better results than its finite volume counterpart, al-
though it can be shown that for interior points both
schemes yield the same approximation. A detailed
examination led us to discover that this discrepancy
resuits from assuming piecewise constant numerical
fluxes for the boundary integrals, resulting in a poor
approximation for the boundary points. A careful
numerical integration formula has to be used in the
boundary integrals to get a consistent approximation

Copyright ©1995 by the authors. Published by the
American Institute of Aeronautics and Astronautics,
Inc. with permission. :

with the finite element approximation. This consis-
tent boundary integration formula is derived here.

The accuracy of any upwind finite volume scheme
is strongly determined by the accuracy of a funda-
mental process known as reconstruction: e.g. given
pointwise values of the solution at the nodes of the
mesh, reconstruct the polynomial approximation to
the solution in the control volume. It has been
demonstrated that the piecewise linear reconstruction
methods offer a substantial improvement over the ba-
sic first order piecewise constant scheme3~10. The
piecewise quadratic reconstruction provides a further
improvement over its piecewise linear counterpart.
However, this is achieved at a very high computa-
tional cost®. In addition, application of the piecewise
quadratic reconstruction scheme to highly stretched
meshes remains a problem. Therefore, only piecewise
linear reconstruction methods are of interest in this
paper. These methods require a best estimate for the
solution gradients within each control volume. The
most popular linear reconstruction schemes on un-
structured meshes are based on either a Green-Gauss
formulation or a least-squares principal. Here, we
propose a new reconstruction scheme based on the
consistent mass-matrix, motivated by the observation
that the consistent mass-matrix should be used in the
first place, when the solution gradient is computed in
a finite element context. Unlike the Green-Gauss or
least-squares reconstruction schemes, which rely only
upon next-neighbor information, the mass-matrix re-
construction involves information of points beyond
nearest neighbors. It is this extra information that
yields a more accurate estimation of solution gradi-
ents.

Several numerical results for a wide range of flow
conditions, from subsonic to supersonic, in both invis-
cid and viscous flows, are presented to demonstrate
the performance of the proposed improved scheme.
The numerical results indicate that the mass-matrix
reconstruction gives much better results than the
Green-Gauss or least-squares schemes and that con-
sistent boundary integration is important to both con-
vergence and accuracy for some test cases.

II. GOVERNING EQUATIONS

The Euler and Navier-Stokes equations governing
the unsteady flows can be written in integral form as

—a—/UdQ+/F-nd1‘=0, (1)
3 /., .

for a domain Q with boundary T = 89Q. In this equa-
tion, U is the vector of the conservative variables for
mass, momentum, and energy. The F represents the
inviscid and viscous flux vectors. n denotes the out-
ward normal to the boundary T.

III. FINITE VOLUME DISCRETIZATION

The governing equation (1) is discretized using a
node-centered finite volume formulation, where flow
variables are placed at the nodes of the mesh. The
control volume C; for each node i is taken to be the
median dual mesh cells, which are constructed by con-
necting the centroid of the neighboring cells and the
midpoints of the two edges that share the vortex i, as
shown in Figure a.

acl
l

Ci

Fig. a Representative Unstructured Grid and Dual
Mesh Cell

The finite volume approximation of the governing
equation (1), applied to the control volume around
node becomes '

U;
area(C;)Ei(-k— +./ac F-ndl' =0, (2)

where JC; is the boundary of the control volume C;.

The flux integral in equation (2) is evaluated
by summing all the contributions over the cell inter-
faces between the node i and its neighboring node j,
0Cij(= 0C; N 0Cj). Equation (2) can then be rewrit-
ten in a compact form as

dU;
Mi—dt— = —Ry, (3)

where M; is the volume of the dual mesh cell (equiva-
lent to the lumped mass matrix in the finite elernent),
and R is the right hand side residual,

m=—§:/ F.ndl — F-ndl. (4)
j 8C.»,— ac;nr

The numerical fluxes on the interface Cj; are approx-
imated at the mid-point of edge ij, and the integral
along the interface can then be evaluated as

/ F-ndl = F;; - Nyj, (5)
aC;

where Nj; = fac;,» ndl' denotes the normal to the

interface 0C;;.

It is clear that the right hand side is formed by
two loops; one is over the edges of the mesh, the other
over the boundary faces. It can be readily shown that
if a linear shape function for the fluxes is used in the
finite element method, i.e.,

F=) FN (6)

where Nj; is the standard linear finite element shape
function associated with the node ¢, and a linear in-
terpolation used for the fluxes in the finite volume
method, i.e.,

Fyj = %(F.‘ + F;), (M

both approximations would produce the same results
for an interior point (i.e. the same right hand side).
However, this is not necessarily true for a boundary
point, where the results depend on how to one com-
putes the boundary integral in Eq. (4). If the bound-
ary integral is computed using a piecewise constant
approximation for the numerical fluxes, i.e.,

L..
F.-ndl'=Y F; n;; =L, (8)
-/;C.nl‘ Z ! 2

where the summation is over all the boundary faces
attaching the node 7, n;; represents the unit vector
normal to the boundary face ij, and L;; denotes the
length of boundary face ij, they will give different
right hand side. The natural question to be asked at
this point is then which one gives the better approx-
imation. To illustrate this point, we compared the
velocity field for a potential flow in a channel using
both the finite volume approach and the finite ele-
ment approach. Note that the finite element approach
is equivalent to the common area-weighted averaging
approach. Figures b and ¢ display the velocity con-
tours obtained by finite volume and finite element ap-
proximations, respectively. One can clearly see that
the finite volume approach gives an erroneous solution
on the boundaries, while the finite element approach
produces a correct solution. Assuming that both ap-
proaches produce the same results for a boundary
point, it is a direct but lengthy process to show that
the following integration formula should be used in
the boundary integral for the finite volume approach:
/ F-ndI‘:ZiF'—_’-E’--nij%, (9)
acinr 6

- ‘ . : '

in 2-D, and

6F; + F; + F; Lisk
F ndl = : J ‘niir——, (10
/e;c.nr‘ Z 8 73 (10)

in 3-D. In general, the difference between using the
piecewise constant approximation and the above av-
eraged formulas in the boundary integrals for the Eu-
ler equations has little effect on both solution conver-
gence and accuracy. But for some cases, the difference
can be so significant that the consistent integration
formulas (9) and (10) are recommended for use.

17
[

\ WA
kR
S,

Fig. b Potential velocity contours obtained using finite
volume approach

Fig. c Potential velocity contours obtained using finite
element approach

As mentioned earlier, if the numerical fluxes at
the interface in equation (5) are simply evaluated as
an arithmetical average of the normal fluxes, the re-
sulting finite volume scheme, equivalent to the classic
Galerkin finite element scheme, allows for for the ap-
pearance of checkerboarding modes, and thus suffers
from numerical instabilities, unless some type of nu-
merical dissipation in the form of artificial viscosity is
introduced. To construct a stable scheme for the Eu-
ler equations, any of the Riemann solvers can be for-
mulated by adopting different forms for the numerical
fluxes at the interface. In the present work, a stable
scheme is obtained by using one of the most popu-
lar approximate Riemann solvers, namely the flux-
difference splitting of Roe!!:

1
Fi; - Nij =§(F.' + F;) - Nyj

1
-3 [A(U;,U;,Ni;) | (U; = Ui, (11)

where | A | denotes the standard Roe matrix evalu-
ated in the direction Ny;. In equation (11), the solu-
tion is assumed to be piecewise constant per control
volume, and the resuiting upwind scheme is only first
order accurate in space. To achieve higher order ac-
curacy, the solution is assumed to be piecewise linear
in the control volume, and the numerical fluxes at the
interface is evaluated using upwind-biased interpola-
tions of the solution U via the MUSCL approach!?.
This leads to the numerical fluxes

1
Fij - Nij =5(Ff + F}) - Nyj
1 - -
-5 | A(UF, U7, Ny) [(U7 - UF) (12)

where

Ff=F(U}), F;=F{Uy). (13)
The upwind-biased interpolations for U} and U7 are
defined by

1
Ur=u;+ §¢lij VUi, (14)

and :)
Uy =U; - §¢1.'j -VU; , (15)

where 1;; = r; — r; is the length vector of this edge
and ¢ is the flux limiter.

IV. RECONSTRUCTION SCHEMES

As seen above, accurate reconstruction is the key
ingredient in extending a first order upwind scheme to
higher order spatial accuracy on unstructured meshes.
The reconstruction algorithm consists of finding a
polynomial representation to the solution in each con-
trol volume, given pointwise values of a solution at
nodes of the mesh. For the piecewise linear recon-
struction, where a linear polynomial approximation
to the solution is generated in each control volume,
the computation of solution gradients at nodes of the
mesh is simply required. In this section, three meth-
ods of computing solution gradients will be addressed
and discussed.

a. Green-Gauss reconstruction

The most commonly used and the simplest re-
construction scheme is the Green-Gauss gradient re-
construction. This gradient calculation is obtained by
using the control volume approach and applying the
Green-Gauss’s theorem,

M;(Vu); = ‘/;04 u-ndl. (16)

As mentioned in the previous section, this reconstruc-
tion scheme is equivalent to the area-weighted aver-
aging approximation in the finite element, if the con-
sistent integration formulas (9) and (10) are used in
the boundary integral.

b. Least-Squares reconstruction '

Least squares reconstruction provides an alter-
native method for computing solution gradients. The
computation of solution gradients are performed in
the form of a minimization problem. The complete
details of this reconstruction procedure can be find in
reference 8. However, the procedure will be summa-
rized here for completeness. Consider a node 7 and
assume that the solution veries linearly along an edge
tj. Then, the change in node values of the solution
along this edge can be computed by

(Vu); - (rj —ry) = yj — u;. (17

Similar equations could be written for all edges con-
nected to node 1, subject to an arbitrary weighting
factor w;. This yields the following non-square ma-
trix

wiAz; wiAy wi(uy — uj)

wa Az, wiAy, wn (Un — u;)
which can be solved using the least squares method.
The algorithm can be implemented using the edge-
based data structure at a cost comparable to that of
the Green-Gauss reconstruction.

This formulation provides a freedom in the choice
of weighting coefficients w;. These weighting coef-
ficients can be selected as a function of the geome-
try and/or solution. Classical approximations in one
dimension can be recovered by choosing geometrical
weights of the form w; = 1.0/ | r; — rj |* for values of
t = 0,1,2. The numerical computations shown in the
next section were performed using t = 1.

c. Consistent mass reconstruction

The common feature of the previous two recon-
struction schemes is that the estimate of the solution
gradients relies only on next-neighbor information. It
is apparent that information at points beyond near-
est neighbor must be involved to get a more accu-
rate estimation of solution gradients. This can be
achieved using the consistent mass matrix instead of
the lumped mass matrix in the Green-Gauss’ recon-
struction scheme, i.e.,

M.Vu=R, (19)

which, in fact, should have been used in the first place.
The consistent mass matrix was replaced by diagonal,
lumped mass matrix only for computational expedi-
ency. As M. possesses an excellent condition number,
equation (19) is never solved directly, but iteratively.
This is done using an iterative procedure of the form:

M(Vuf — VufF~1) = R — M Vu*f~1,1 < k < niter

. (20)
where Vu* denotes the kth iterate. Typically, three
passes are required to converge. The solution of equa-
tion (20) can also be obtained using an edge-based

data structure. The computational cost for solving
this equation is very small compared to the overall
cost for any upwind type schemes.

V. NUMERICAL RESULTS

All computations used an explicit three-stage
Runge-Kutta time-stepping scheme with local time
stepping and implicit residual smoothing for advanc-
ing the solution to steady state. The solutions were
obtained by converging the residual to computer ma-
chine zero. Wherever possible, the solutions were ob-
tained using a second order scheme without any lim-
iters, in an effort to ensure that the solution accuracy
is affected only by the reconstruction schemes, not by
the limiters.

Test case 1. Supersonic vortex flow

The problem under consideration is an inviscid
supersonic vortex flow. This test case was selected
to compare the order of accuracy and discretization
error associated with Green-Gauss, least-squares, and
consistent mass reconstruction schemes, since an ex-
act, closed form, analytical solution exists for such
flow. Since this is a shock free compressible flow, the
solution is obtained using a second order scheme with-
out any limiters. Thus, this test case provides a good
opportunity to compare the accuracy of each recon-
struction schemes, without any influence of limiters.
By comparing the error in the discrete solutions on a
successively refined sequence of meshes, quantitative
measurements of both order of accuracy and absolute
error are possible. For each reconstruction scheme,
solutions are sought on a set of three telescoping grids
with 31X31, 61X11, and 121X21 nodes. The Mach
number at the inner radius r; is specified at 2.25 and
the outer radius r, at 1.384 ;. Figure la shows the
three sets of regular meshes used in the simulation.
Figure 1b provides the details of the spatial accuracy
of each reconstruction scheme for this numerical ex-
periment. The results indicate that the consistent-
mass matrix reconstruction gives better results than
the other two in terms of both order of accuracy and
absolute error.

Test case 2. Subsonic flow in a channel

The second test case presents an inviscid sub-
sonic flow in a channel with a 10% thick circular bump
on the bottom. The Mach number at the inflow is 0.1.
The solution is obtained using a second order scheme
without any limiters. The mesh, which contains 839
grid points, 1,559 elements and 117 boundary points,
is depicted in Fig. 2a. Figure 2b displays the com-
puted velocity contours in the flow field obtained by
the three different reconstruction schemes. Figure 2¢
shows the velocity distributions on the lower wall ob-
tained by the three reconstruction schemes. For com-
parison purposes, we add the potential solution ve-
locity distribution. Entropy distribution results are
displayed in Fig. 2d. The results indicate that the
consistent-mass reconstruction generates the least nu-
merical entropy, and produces a virtually identical so-
lution to the potential solution. The significant im-
provement of the consistent mass reconstruction over

the two other reconstruction schemes can clearly be
observed in Fig. 2c.

Test Case 3. NACA0012 Airfoil

The problem under consideration is transonic
flow around a NACAOQ012 airfoil with a freestream
Mach number of 0.8, and an angle of attack of 1.25
degrees - a classical test problem for Euler solvers.
The solution is obtained using van Albada limiter.
The mesh containing 6,891 elements, 3,537 points,
and 183 boundary points is displayed in Fig. 3a. Fig-
ures. 3b to 3d show the computed pressure contours
in the flow fileds obtained by the three reconstruc-
tions schemes, respectively. The pressure coefficient
distributions on the airfoil obtained by three recon-
struction schemes are shown in Figs. 3f-h. Figure 3e
shows a comparison of entropy distribution on the
airfoil for the three reconstruction schemes. It is ob-
served that the consistent mass matrix reconstruction
gives not only oscillation-free strong shock on the up-
per surface, but also a sharper weak shock on the
lower surface.

Test Case 4. Viscous Flow Past a Flat Plate

This test case involves a laminar flow past a flat
plate at a Mach number of 0.2 and a chord Reynolds
number of 10,000. The computation is performed us-
ing a second order scheme without any limiters. The
mesh used in the computation is shown in Fig. 4a,

and contains 2,604 elements, 1,376 points, and 146 .

boundary points. Figure 4b shows a comparison of
the Blasius velocity profiles and the computed ve-
locity profiles as scaled by the Blasius similarity law
at x/L=0.2585. The numerical results indicate that
all three reconstruction schemes give virtually identi-
cal x-direction velocity distribution. Nevertheless, the
consistent mass matrix reconstruction scheme yields
the best y-direction velocity distribution.

VI. CONCLUSIONS

Recent improvements to a node-centered upwind
finite volume scheme are presented for the solution
of the Euler and Navier-Stokes equations on unstruc-
tured meshes. A more accurate boundary integration
procedure, consistent with the finite element approx-
imation, is formulated. A new reconstruction scheme
based on the consistent mass matrix iteration is de-
veloped. A variety of flow problems are computed
to demonstrate the improvements of the proposed
scheme. The numerical results indicate that the con-
sistent mass matrix reconstruction produces the most
accurate gradient estimates, and thus significantly im-
proves the quality of numerical solutions with very
little additional computational cost.

Acknowledgments

This research was sponsored by the Defense Nu-
clear Agency. Dr. Michael E. Giltrud served as the
technical program monitor. Partial funding for the
third author was also provided by the Air Force Of-
fice of Scientific Research. Dr. Leonidas Sakell served
as the technical monitor.

References

1 H. Luo, J. D. Baum, R. Lohner and J. Cabello,
“Adaptive Edge-Based Finite Element Schemes for
the Euler and Navier-Stokes Equations on Unstruc-
tured meshes,” AIAA Paper 93-0336, Jan. 1993.

2 H. Luo, J. D. Baum, and R. Lohner, “Edge-Based
Finite Element Scheme for the Euler Equations,”
AIAA Journal, Vol. 32, No. 6, 1994, pp.1183-1190.
3 J. Peraire, J. Peiro and K. Morgan, “A 3D Finite
element Multigrid Solver for the Euler Equations,”
AJAA Paper 92-0449, Jan. 1992.

4 V. Billey, J. Périaux, P. Perrier, B. Stoufflet, “2-
D and 3-D Euler Computations with Finite Element
Methods in Aerodynamic,” International Conference
on Hypersonic Problems, Saint-Etienne, Jan. 13-17
(1986).

5 Timothy J. Barth and Dennis C. Jespersen, “The
Design and Application of Upwind Schemes on Un-
structured Meshes,” AIAA Paper 89-0366, Jan. 1989.
6 David L. Whitaker, “Solution Algorithms for the
Two-Dimensional Euler Equations on Unstructured
Meshes,” AIAA Paper 90-0697, Jan. 1990.

7 J. T. Batina, “Three-Dimensional Flux-Split Euler
Schemes Involving Unstructured Meshes,” AIAA Pa-
per 90-1649, Jan. 1990.

8 T. J. Barth, “Recent Developments in High Order
K-Exact Reconstruction on Unstructured Meshes,”
AIAA Paper 93-0668 Jan. 1993.

® M. Aftosmis, D. Gaitonde, and T. Sean Tavares,
“On the Accuracy, Stability and Monotonicity of
Various Reconstruction Algorithms for Unstructured
meshes,” AIAA Paper 94-0415, Jan. 1994.

10 C, R. Mitchell, “Improved Reconstruction Schemes
for the Navier-Stokes Equations on Unstructured
Meshes,” ATAA Paper 94-0642, Jan. 1994.

11 p L. Roe, “Approximate Riemann Solvers, Pa-
rameter Vectors and Difference Schemes,” Journal of
Computational Physics, 43 (1981), pp. 357-372.

12 Van Leer, “Towards the Ultimate Conservative Dif-
ference Scheme, II. Monotonicity and Conservation
Combined in a Second Order Scheme,” Journal of
Computational Physics, 14 (1974), pp. 361-370.

Fig.la

'

ot

(9]
J

LOG(error-L2)
o

-2.5 4

-3.0

Sequences of meshes used for supersonic vertex flow

—o—e—e—e— Green-Gauss(slop=1.84)
—6—e—6—5— Least-Squares(slop=1.82)
—+—+——— Consistent-mass(slop=1.87)

-2.5

Fig.1b Accuracy summary for different reconstruction schemes

24 23 22 21 20 -19 -1.8
LOG(cell-size)

—

APPENDIX 3: MESH MOVING TECHNIQUES

14

AFOSR Final Report

14

COMMUNICATIONS IN NUMERICAL METHODS IN ENGINEERING, Vol. 12, 599—-608 (1996)

IMPROVED ALE MESH VELOCITIES FOR MOVING BODIES

RAINALD LOHNER AND CHI YANG
GMU/CSI, George Mason University, Fairfax, VA 22030-4444, USA

SUMMARY

A Laplacian smoothing of the mesh velocities with variable diffusivity based on the distance from moving
bodies is introduced. This variable diffusivity enforces a more uniform mesh velocity in the region close to
the moving bodies. Given that in most applications these are regions where small elements are located, the
new procedure decreases element distortion considerably, reducing the need for local or global remeshing,
and in some cases avoiding it altogether.

KEY WORDS finite elements; moving grids; moving bodies; mesh velocity; ALE

1. INTRODUCTION

For any arbitrary Lagrangean—Eulerian (ALE) unstructured-grid field solver that considers
bodies or surfaces in relative motion to one another, a recurring question has been how to
specify the mesh velocity of the field points.' ' In mathematical terms: given the velocity w on
the moving surfaces:

W|r0=Wo’ 1

and, at a certain distance from these moving surfaces, as well as all the remaining surfaces, a
vanishing mesh velocity

w |r| = 0’ (2)

find the spatial distribution of w such that element distortion is minimized. If this mesh velocity
distribution is not smooth, distorted elements will appear quickly, forcing many local or global
remeshings, with the ensuing loss of accuracy and increase in CPU requirements. Three families
of methods have been used to specify the mesh velocity:

. (a) Analytic user-prescribed functions,
(b) Smoothing of coordinates, and
(c) Smoothing of velocities.

In the first case, the mesh velocity is prescribed to be an analytic function of the distance from
the surface. Efficient distance-from-body search algorithms are nowadays common,''~** albeit
scalar. Given the distance from moving surfaces d, and the point on the surface closest to it
x| T, the mesh velocity at any field point is given by

w=w(x|)f(0). 3
CCC 1069-8299/96/100599-10 Received 24 October 1995
© 1996 by John Wiley & Sons, Ltd. Revised 11 March 1996

600 R. LOHNER AND C. YANG

The function f(J) assumes the value of unity for 6 =0, and decays to zero as 0 increases. This
makes the procedure somewhat restrictive for general use, particularly if several moving bodies
are present in the flowfield. On the other hand, the procedure is extremely fast if the initial
distance J can be employed for all times.®*

In the second case, the edges of the unstructured grid are treated as springs that are relaxed in time
to achieve equilibrium. In this way, a uniform element distribution is maintained. Starting from the
prescribed boundary velocities, a new set of boundary coordinates is obtained at the new time step:

X" e=x"|r+ At wip. 4

Based on these new values for the coordinates of the boundary points, the mesh is smoothed.
Although more sophisticated mesh smoothing techniques have been proposed,'® by far the most
common way to smooth this new mesh is via spring analogy relaxation.®’ The force exerted by
each spring (edge) is a function of its length and acts along its direction. Therefore, the sum of
the forces exerted by all springs surrounding a point can be written as

ns;
fi=> c(lx;- x)x; - x),)

j=1
where ¢ denotes the spring function, x; the coordinates of the point, and the sum extends over
all the points surrounding the point. At the surface of the computational domain, no movement
of points is allowed, i.e. Ax =0. The new values for the coordinates are obtained iteratively via a

relaxation or conjugate gradient scheme.>’” Once the new coordinates have been evaluated, the
mesh velocity is computed from

1 n+l n
w=— (" -x"). 6)

Most of the potential problems that may occur for this type of mesh velocity smoothing are due
to initial grids that have not been smoothed. For such cases, the velocity of the moving
boundaries is superposed to a ficticious mesh smoothing velocity which may be quite large
during the initial stages of a run. Moreover, for spring analogy smoothers there is no guarantee
that negative elements will not appear.

In the third case, the mesh velocity is smoothed directly, based on the exterior boundary
conditions given by (1), (2). The aim, as stated before, is to obtain a mesh velocity field w in
such a way that element distortion is minimized. Consider for the moment the 1-D situation
sketched in Figure 1. At the left end of the domain, the mesh velocity is prescribed to be w,. At

XO x1x

Figure 1. Mesh velocity smoothing in 1-D

. . ¥ ' 3 3 N

IMPROVED ALE MESH VELOCITIES 601

the right end, the mesh velocity vanishes. If the mesh velocity decreases linearly, i.e.

dw
e 7
™ &v @)

then the elements will maintain their initial size ratios. This is because for any two elements the
change in size dh during one time step is given by

Oh=(w,— w)At=Aw At, ®)
This implies that for the size ratio of any two elements 7, j we obtain

R ! h l +Aw, At hi|"+gvh‘.'"At _ h; " o
n| Bl AwAr hrgohAr k|

i.e. all elements in the regions where mesh velocity is present will be deformed in roughly the
same way. Solutions with constant gradients are reminiscent of Laplacian operators, and indeed,
for the general case, the mesh velocity may be obtained by solving

VkVw =0, ' (10)
with the Dirichlet boundary conditions given by (1), (2). This system is discretized using finite

element procedures. The resulting system of equations can be solved in a variety of ways, e.g.
via relaxation as

CiAw'= —-At Ki(w' —w’), an
where
ci=3 |k, (12)
i®j
and the optimal Az-sequence is given by

At' = 1 , i=1,n (13)

1+ cos[n—(i-:—l—)-]

n

If the diffusion coefficient appearing in (10) is set to k=1, a true Laplacian velocity smoothing is
obtained. This yields the most ‘uniform deformation’ of elements, and therefore minimizes the
number of remeshings or remappings required. Alternatively, for element-based codes, one may
approximate the Laplacian coefficients K in (11) by

Viw=-(M,-M,)w, (14)

where M,, M_ denote, respectively, the lumped and consistent mass matrices.This
approximation is considerably faster for element-based codes (for edge-based codes there is no
difference in speed between the true Laplacian and this expression), but it is equivalent to a
diffusion coefficient k = A2 This implies that the gradient of the mesh velocity field will be larger
for smaller elements. These will therefore distort at a faster rate than the larger elements.
Obviously, for uniform grids this is not a problem, but in many cases the smallest elements are
close to the surfaces that move, prompting many remeshings.

Based on the previous arguments, one may also consider a diffusion coefﬁcxent of the form
k=h"?, p>0. In this case, the gradient of the mesh velocity field will be larger for the larger

602 R. LOHNER AND C. YANG

vs

Figure 2. 1-D movement of face A

elements. The larger elements will therefore distort at a faster rate than the smaller ones — a
desirable feature for many applications.

To see more clearly the difference between mesh velocity and coordinate smoothers,
consider the simple box shown in Figure 2. Suppose that face A is being moved in the x-
direction. For the case of coordinate smoothing, there will, in all likelihood, appear mesh
velocities in the y- and z-directions. This is because, as the mesh moves, the smoothing
technique will result in displacements of points in the y- and z-directions, and hence velocities
in the y- and z-directions. On the other hand, for the case of mesh velocity smoothing, only
displacements in the x-direction will appear. This is because the Dirichlet boundary conditions
given by (1), (2) do not allow any mesh velocity other than in the x-direction to appear. We
consider this an advantage of mesh velocity smoothers, and have therefore pursued them from
the outset.

2. VARIABLE DIFFUSIVITY LAPLACIAN SMOOTHING

In most practical applications, the relevant flow phenomena and associated gradients of density,
velocity and pressure are on or close to the bodies immersed in the fluid. Hence, the smallest
elements are typically encountered close to the bodies. A straightforward Laplacian smoothing
of the mesh velocities will tend to distort the elements in these critical regions. Thus, the small
elements in the most critical regions tend to be the most deformed, leading to a loss in accuracy
and possible reinterpolation errors due to the high rate of remeshings required. In an attempt to
mitigate this shortcoming, we propose a diffusion coefficient k that is based on the distance &
from the moving bodies. In general, & should be a function of J as sketched in Figure 3. For
small &, & should be large, leading to a small gradient of w, i.e. nearly constant mesh velocity
close to the moving bodies. For large J, & should tend to unity in order to ensure the most
uniform deformation of the (larger) elements that are away from the bodies.

2.1. Distance evaluation

The calculation of the distance 0 can be carried out in a variety of ways. Scalar, optimal
search procedures have been employed within grid generation and turbulence modelling,'’~**
but for purposes of parallelization we prefer the Laplacian-based distance evaluation detailed

IMPROVED ALE MESH VELOCITIES 603

Figure 3. General shape for desired diffusivity &

here. Consider the 1-D Poisson problem:
0.==-55 0(0)=0, d,|,=0. (15)

The exact solution is given by

6= sx(x1 - %) (16)
implying
26,
X =, |—; 0 . lo=+/250,. a7n
s

This means that in order to obtain a unit gradient at x=0, one should choose s=1/24,, which in
turn leads to x, = 20,. Another way to interpret the results is that the ‘rigidization’ distance x, is
related to the maximum value of J = 3§, and the source strength s.

This simplified analysis is not valid for 2-D and 3-D solurions of the general Poisson problem

V5= -s; 0, =0; ¢ Ll =0, (18)

where for radial symmetry the solutions contain In(r) and 1/r terms. On the other hand, we do
not require the exact distance from moving bodies, but only a distance function that will give
the proper behaviour for k. We therefore use (18) to determine the distance function 6. The
Poisson problem is solved using finite element procedures and an iterative procedure similar to
that given by (11)—(13) above. This fits naturally into existing CFD codes, where edge-based
Laplacian operator modules exist for artificial or viscous dissipation terms. The Neumann
condition in (18) is enforced by not allowing 6 to exceed a certain value. After each iterative

pass during the solution of (18), we impose
<4, (19)

which in effect produces the desired Neumann boundary condition at T".

2.2. Diffusivity as a function of distance

As stated before, for small J, & should be large, leading to a very small gradient of w, i.e.
nearly constant mesh velocity close to the moving bodies. For large J, k should tend to unity in

604 R. LOHNER AND C. YANG
k
k
0
1 -
T T
3 8y 8

Figure 4. Diffusivity as a function of distance

order to ensure the most uniform deformation of the (larger) elements that are away from

the bodies. For the diffusion k, we use the following constant-linear-constant function (see
Figure 4):

u !

k=ko+(1— ko)max(O, min(l, -9,)) (20)

The choice of the cut-off distances is, in principle, arbitrary. We have found é,= x,/4, 0, = x,/2
to be a good choice.

3. EXAMPLES

The procedure outlined above has been used extensively within an unstructured-grid, edge-based
ALE CFD code.’ The usefulness of changing k according to the distance as given by (20) is
demonstrated on a moving wing as well as a hypersonic store release case computed recently.

Figure 5. Outline of wind after 0, 30 and 100 time steps

IMPROVED ALE MESH VELOCITIES 605

3.1. Wing

A moving wing is first considered using both Laplacian (k,=1, x,=0) and modified
Laplacian (ko= 100, x, =2) velocity smoothing. Figure 5 shows the outline of the wing after
0, 30 and 100 time steps. The surface grids and mesh velocities obtained using the two
methods after 30 time steps are shown in Figures 6 and 7. As a result of the larger gradient of
the mesh velocity field, the meshes in the vicinity of the wing start becoming distorted in the
case of Laplacian velocity smoothing, and the first negative element appears after 34 time
steps. On the other hand, for the modified Laplacian velocity smoothing the meshes in the
vicinity of the wing remain undistorted, and no remeshing is required even after 100 time

(a)

Figure 6. Surface mesh after 30 time steps: (a) Laplacian velocity smoothing; (b) modified Laplacian velocity
smoothing

(@) (b)

Figure 7. Surface mesh velocity after 30 time steps: (a) Laplacian velocity smoothing (Al v} =0-05); (b) modified
Laplacian velocity smoothing (A} v| =0-05)

606 R. LOHNER AND C. YANG

(a) (b)

N

Figure 8. Surface mesh after 100 time steps (modified Laplacian velocity smoothing)

(b)

= (N

Figure 9. (a) Surface mesh velocity after 100 time steps (A} v| =0-05); (b) distance function (Ad = 0-05); (modified
Laplacian velocity smoothing)

steps. The surface grid and mesh velocity, as well as the distance function after 100 time
steps are shown in Figures 8 and 9, respectively.

3.2. Hypersonic store release

As a second, more realistic case, we consider a hypersonic store release. From a given state,
we followed the solution for 100 time steps, setting in the first case k,=1, x, =0, and in the
second case k=50, x, =0-08. The surface grids and mesh velocities obtained after 100 time
steps are displayed in Figures 10 and 11. As one can see, the new variable £ mesh velocity
smoothing leads to a much less deformed grid close to the moving missile. For this case, the

IMPROVED ALE MESH VELOCITIES 607

AAA 4“’1; 1

ﬁmm,vmw

O
RS CROEERR

XA ANNDA
;YAVAVA‘ﬂ“f%%ﬁ? RAAan
‘v‘vgum

Y% 0

% Y P

KA SRR
(K R e R XN K
KKp AR A DDA AN K
Pl
% 5’44hmnvuﬂ""ﬁvmm‘ any mg o
R

)
A

Figure 10. Surface mesh after 100 time steps: (a) Laplacian velocity smoothing; (b) modified Laplacian velocity
smoothing

(@) (b)

Figure 11. Surface mesh velocity after 100 time steps: (a) Laplacian velocity smoothing; (b) modified Laplacian
velocity smoothing

number of local remeshings required dropped by a factor of 1:4, leading to considerable CPU
savings in a multiprocessor environment.

4. CONCLUSIONS

A Laplacian smoothing of the mesh velocities with variable diffusivity based on the distance
from moving bodies has been found effective for unstructured-grid ALE solvers. The variable
diffusivity enforces a more uniform mesh velocity in the region close to the moving bodies.
Given that in most applications these are regions where small elements are located, the new
procedure decreases element distortion considerably, reducing the need for local or global
remeshing, and in some cases avoiding it altogether.

As the mesh movement is linked to a time-stepping algorithm for the fluid part, and the body
movement occurs at a slow pace compared to the other wavespeeds in the coupled fluid/solid
system, normally no more than five steps are required to smooth the velocity field sufficiently,
i.e. 3<n<5in (11). The overhead incurred by this type of smoothing is very small compared to
the overall costs for any ALE-type methodology for Euler or Navier—Stokes flow solvers.

608 R. LOHNER AND C. YANG

ACKNOWLEDGEMENTS

This work was partially funded by AFOSR under contract F496209410119, with Dr. Leonidas
Sakell as the technical monitor.

—

10.
11.
12.

13.
14.

REFERENCES

. L. Formaggia, J. Peraire and K. Morgan, ‘Simulation of a store separation using the finite element

method’, Appl. Math. Model., 12, 175-181 (1988).

. R. Lohner, ‘An adaptive finite element solver for transient problems with moving bodies’, Comput.

Struct., 30, 303-317 (1988).

. J. T. Batina, ‘Unsteady Euler airfoil solutions using unstructured dynamic meshes’, AIAA J., 28(8),

1381-1388 (1990).

. R. Léhner, ‘Three-dimensional fluid-structure interaction using a finite element solver and adaptive

remeshing’, Comput. Syst. Eng., 1(2-4), 257-272 (1990).

. J. D. Baum and R. Lohner, ‘Numerical simulation of pilot/seat ejection from an F-16‘, AJAA-93-

0783, (1993).

. A. H. Boschitsch and T. R. Quackenbush, ‘High accuracy computations of fluid-structure interaction

in transonic cascades’, AIAA-93-0485, (1993).

. R.D. Rausch, J. T. Batina and H. T. Y. Yang, ‘Three-dimensional time-marching aeroelastic analyses

using an unstructured-grid Euler method’, AIAA J., 31(9), 1626—1633 (1993).

. G. A. Davis and O. O. Bendiksen, ‘Unsteady transonic two-dimensional Euler solutions using finite

elements’, AIAA J., 31, 1051-1059 (1993).

. J. D. Baum, H. Luo and R. Lohner, ‘A new ALE adaptive unstructured methodology for the

simulation of moving bodies’, AIAA-94-0414, (1994).

V. Venkatakrishnan and D. J. Mavriplis, ‘Implicit method for the computation of unsteady flows on
unstructured grids’, AIAA-95-1705-CP, (1995).

P. Rostand, ‘Algebraic turbulence models for the computation of 2-D high speed flows using
unstructured grids’, ICASE Rep. 88-63, (1988).

R. Lohner, ‘Some useful data structures for the generation of unstructured grids’, Commun. Appl.
Numer. Methods, 4, 123—135 (1988).

J. Bonet and J. Peraire, ‘An alternate digital tree algorithm for geometric searching and intersection
problems’, Int. J. Numer. Methods Eng., 31, 1-17 (1991).

D. Martin and R. Léhner, ‘An implicit linelet-based solver for incompressible flows’, AJAA-92-0668,
(1992).

[_--—-—-'-n-—-—-y

AFOSR Final Report

APPENDIX 4: FAST INTERPOLATION SCHEMES

15

15

JOURNAL OF COMPUTATIONAL pHYSIcS 118, 380-387 (1995)

Robust, Vectorized Search Algorithms for Interpolation on
Unstructured Grids

RAINALD LOHNER

GMU/CSI, The George Mason University, Fairfax, Virginia 22030-4444

Received October 19, 1993; revised November 21, 1994

Several search algorithms for the interpolation of data associated
with unstructured grids are reviewed and compared. Particutar em-
phasis is placed on the pitfalls these algorithms may experience
for grids commonly encountered and on ways to improve their
performance. It is shown how the most CPU-intensive portions of
the search process may be vectorized. A technique for the proper
interpolation of volumetric regions separated by thin surfaces is
included. Timings for several problems show that speedups in ex-
cess of 1:5 can be obtained if due care is used when designing
interpolation algorithms. © 1995 Academic Press, Inc.

1. INTRODUCTION

The need to interpolate quickly the fields of unknowns from
one mesh to another is common to many areas of computational
mechanics and computational physics. The following classes
of problems require fast interpolation algorithms:

(a) Simulations where the grid changes as the solution
proceeds. Examples of this kind are adaptive remeshing for
steady-state and transient simulations [1-3], as well as remesh-
ing for problems where grid distortion due to movement be-
comes too severe [4, 5].

(b) Loose coupling of different codes for multi-disciplinary
applications. In this case, if any of the codes in question are
allowed to perform adaptive mesh refinement, the worst
case scenario requires a new interpolation problem at every
timestep.

(c) Interpolation of discrete data for the initialization or
continuous update of boundary conditions. Common ex-
amples are meteorological simulations, as well as climatologi-
cal and geotechnical data for seepage and surface flooding
problems.

(d) Visualization. This large class of problems makes ex-
tensive use of interpolation algorithms, in particular for the
comparison of different data sets on similar problems.

The main reason that prompted us to revisit the search and
interpolation problem was the second class of applications. We
are currently developing a series of loosely coupled multidisci-

380

0021-9991/95 $6.00
Copyright © 1995 by Academic Press, Inc.
All rights of reproduction in any form reserved.

plinary codes. We have found that for these classes of problems,
interpolation can take a non-negligible portion of total CPU-
time, especially for large applications running on multiproces-
sor vector-computers.

In the following, we will concentrate on the fast interpolation
between different unstructured grids that are composed of the
same type of elements. In particular, we will consider linear
triangles and tetrahedra. The ideas developed are general and
can be applied to any type of element and grid. On the other
hand, other types of grids (e.g., cartesian structured grids) will
lend themselves to specialized algorithms that may be more
efficient and easier to implement.

The remainder of the paper is organized as follows. Section
2 describes the basic algorithm used to decide if a point of the
unknown grid is inside an element of the known grid. Sections
3-5 consider the fastest possible algorithms, given the amount
of information available; brute force if only one point needs
to be interpolated (Section 3), octree search for groups of points
(Section 4), and the fastest known vicinity algorithm (Section
5). These algorithms are combined in Section 6, yielding the
fastest grid-to-grid algorithm, an advancing front vicinity algo-
rithm. We then focus on the main innovations of the present
paper: ways of improving robustness and speed by minimizing
brute-force searches at corners and edges, vectorization of the
interpolation procedure, and techniques to interpolate properly
volumetric data separated by thin surfaces. Section 9 presents
some timings, showing the considerable speedups obtained
by the proposed approach. Finally, some conclusions are
drawn.

2. THE BASIC ALGORITHM

Consider an unstructured finite element or finite volume
mesh, as well as a point p with coordinates x,. A straightforward
way to determine if the point p is inside a given element el is
to determine the shape-function values of p with respect to the
coordinates of the points belonging to el:

x, = >, N'x;. (1)

ROBUST, VECTORIZED SEARCH ALGORITHMS

IEST / oint to be
Interpotated

Boundary

FIG. 5. Failure of nearest neighbour search algorithm.

outperform all other ones. The neighbour-to-neighbour search
algorithm may be summarized as follows:

N.O. Form the List of Elements Adjacent to Elements for The
Given Mesh;

N.1. DO: Loop over the points to be interpolated

N.2. Obtain good starting element START _ELEMENT;
N.3. For START_ELEMENT: Evaluate N’ from Eq. (4);
N.4. IF: Criterion (5) is satisfied THEN
Exit
ELSE

Set: START_ELEMENT to neighbour associated
with min(N");
GOTO N.3
ENDIF
ENDDO

The neighbour-to-neighbour algorithm performs very well
in the domain, but it can have problems on the boundary.
Whereas the brute-force and octree search algorithms can
“‘jump’” over internal or external boundaries, the neighbour-to-
neighbour algorithm can stop there (see Fig. 5). Its performance
depends heavily on how good a guess the starting element
START_ELEMENT is; it can be provided by bins, octrees, or
alternate digital trees. On the other hand, due to its scalar nature,
such an algorithm will not be able to compete with the octree
search algorithm described in Section 3. Its main use is for
point-to-grid or grid-to-grid transfer, where a very good guess
for START_ELEMENT may be provided. This fastest grid-to-
grid interpolation technique is described in the next section.

6. FASTEST GRID-TO-GRID ALGORITHM: VECTORIZED
ADVANCING-FRONT VICINITY

The crucial new assumption made here, as opposed to all
the other interpolation algorithms described so far, is that the
points to be interpolated belong to a grid and that the grid
connectivity (e.g., the points belonging to each element) is given
as input. In this case, whenever the element END_ELEMENT of
the known grid into which a point of the unknown grid falls
is found, all the surrounding points of the unknown grid that

(e
o0
(V%)

have not yet been interpolated are given as a starting guess
END_ELEMENT and stored in a list of ‘‘front’” points
LIST_FRONT_POINTS. The next point to be interpolated is
then drawn from this list, and the procedure is repeated until
all points have been interpolated. The procedure is sketched in
Fig. 6, where the notion of ‘‘front’” becomes apparent. The
complete algorithm may be summarized as follows:

A.1. Form the list of elements adjacent to elements for the
given mesh;: |

A.2. Form the list of points surrounding points for the un-
known grid;

A.3. Mark points of the unknown grid as untouched

A.4. Initialize list of front points LIST_FRONT_POINTS
for unknown grid '

A.5.DO: For every non-interpolated point
NON_INTERP_POINT

AS. From LIST_FRONT_POINTS:

A6 Obtain starting element START_ELEMENT in
known grid

Al Attempt nearest neighbour search for NTRY at-
tempts;

— IF unsuccessful: use brute force

Step 2

- Interpolate Front Points

« Obtain First Point i
- Update Active Front of Close Points

- Otain Active Front of Close Points

Step 3...

m—N Known Grid
® — —® Unknown Crid
- w m i Active Front

- Interpotate Front Points
- Update Active Front of Close Points

FIG. 6. Advancing front vicinity algorithm.

384

#—8 Known Grid
@ — — ® Unknown Grid

FIG. 7.

Problems at concave boundaries.

— IF unsuccessful: stop or skip
= END_ELEMENT

AS. Store shape-functions and host elements
A9. Loop over points surrounding
NON_INTERP_POINT:
— IF: point has not been marked:
— Store END_ELEMENT as starting ele-
ment for this point;
— Include this point in front
LIST_FRONT_POINTS;
ENDIF
A.10. Mark point NON_INTERP_POINT as interpolated
ENDDO

A.ll.IF: LIST_FRONT_POINTS not empty: GOTO A.5

Several possible improvements for this algorithm, layering
of brute-force searches, inside-out interpolation, and vectoriza-
tion. are detailed in the following.

6.1. Layering of Brute-Force Searches

In most instances (the exception being grids with very large
disparity in element size where NTRY attempts are not suffi-
cient), the neighbour-to-neighbour search will only fail on the
boundary. Therefore, whenever a brute-force search is required,
it is advisable to test first the elements connected to the bound-
ary. This will reduce the brute-force search times considerably.
Note, however, that we have to know the boundary peints in
this case. In the present case, the elements of the known grid
are renumbered in such a way that all elements with three or
more nodes on the boundary in 3D and two or more nodes
on the boundary in 2D appear at the top of the list. These
NR BOUNDARY ELS < NELEM elements are scanned first
whenever a brute-force search is required. Moreover, after a
front has been formed, only these elements close to boundaries
are examined whenever a brute-force search is required.

6.2. Inside-Out Interpolation

This improvement is directed towards complex boundary
cases. We group under this category cases where the boundary
has sharp concave corners or ridges. or those cases where, due
to the concavity of the surface points, the boundary may be
close but outside of the known grid (see Fig. 7). In this case,

RAINALD LOHNER

it is advisable to form two front lists. one for the interior points
and one for the boundary points. The interpolation of all the
interior points is attempted first, and only then are the boundary
points interpolated. This procedure reduces drastically the num-
ber of brute-force searches required for the complex boundary
cases listed above. This may be seen from Fig. 8, where the
brute-force at the corner was avoided by this procedure. As
before, knowledge of the boundary points is required for this im-
provement.

6.3. Vectorization

The third possible improvement is vectorization. The idea
is to search for all the points on the active front at the same
time. It is not difficult to see that for large 3D grids, the vector-
lengths obtained by operating in this manner are considerable.
leading to very good overall performance. To obtain a vec-
torized algorithm we must perform steps N.3, A.7 as described
above in vector mode executing the same operations on as
many uninterpolated points as possible. The obstacle to this
approach is that not every point will satisfy criterion (5) in
the same number of attempts or passes over the points to be
interpolated. The solution is to reorder the points to be interpo-
lated after each pass such that all points that have as yet not

Nearest Nelghbour Algorithm Wil Fail Here

1 2 3 Boundary

By Interpolating Volume Points First, The Problem Is
Avolded

«

Boundary

FIG. 8. Avoiding brute-force searches during interpolation.

ROBUST, VECTORIZED SEARCH ALGORITHMS 381

Point to be Interpolated

FIG. 1.

Possible non-uniqueness for interpolation on bricks.

For triangles in 2D and tetrahedra in 3D, we have, respectively,
iwo equations for three shape-functions and three equations for
four shape-functions. The sum-property of shape-functions,

DN=1,)

yields the missing equation, making it possible to evaluate the
shape-functions from the following system of equations:

X, X X X3 N!

S R 3

% o o N[

1 I 1 1 N?
or. In concise matrix notation,

x,=XN—-N=X"x,. (4)

Then, the point p is in element el iff

min(N’, 1 — N)=0, Vi (5)

For other types of elements more nodes than equations are
encountered. The easiest way to determine if a point is inside
an element is to split the element into triangles or tetrahedra
and evaluate each of these sub-elements in turn. If the point
happens to be in any of them, it is inside the element. This
procedure may not be unique for highly deformed bricks, as
shown in Fig. 1. Depending on how the diagonals are taken
for the face A-B-C-D, the point to be interpolated may or may
not be inside the element. Therefore, subsequent iterations may
be required for bricks or higher-order elements with curved
boundaries. Other ways to determine if a point is inside a
bilinear element may be found in [6].

In the following, we will use the algorithm outlined above for

triangles and tetrahedra as the starting point for improvements in
performance. These improvements depend on the assumptions
one can make with respect to the grids employed and the
information available.

3. FASTEST 1-TIME ALGORITHM: BRUTE FORCE

Suppose we only have a given grid and a single point p with
coordinates x,. The simplest way to find the element into which
point p falls is to perform a loop over all the elements, evaluating
their shape-functions with respect to x,:

—DO: Loop over all the elements
— Evaluate N' from Eq. (4);
— IF: Criterion (5) is satisfied:
Exit
ENDIF
ENDDO

Because the central loop over all the elements can readily be
vectorized this algorithm is extremely fast. We will use it in
more refined algorithms both as a start-up procedure, as well
as a fall-back position.

4. FASTEST N-TIME START ALGORITHM:
OCTREE SEARCH

Suppose that, as before, we only have a given grid, but.
instead of just one point p, a considerable number of points
has to be interpolated. In this case. the brute-force algorithm
described before will possibly require a complete loop over the
elements for each point to be interpolated. and. on average. a
loop over half the elements. A significant improvement in speed
may be realized by only checking the elements that cover the
immediate neighbourhood of the point to be interpolated. A
number of ways can be devised to determine the neighbourhood
(see Fig. 2):

—Bins, i.e., the superposition of a cartesian mesh [7, 8],

—Octrees, i.e., the superposition of an adaptively refined
cartesian mesh [9, 10], and

—Alternate digital trees [11].

We consider octrees here, as bins perform poorly for prob-
lems where the nearest-neighbour distances vary by more than
two orders of magnitude in the domain. One may form an
octree with the element centroids or points. In the present case,
we chose the latter option, as for tetrahedral grids the number
of points is significantly less than the number of elements. The
octree search algorithm then proceeds as follows:

— Form the octree for the points of the given mesh;
— Form the list of elements surrounding points for the
given mesh;

| 382
a
[] L J
[]
_.___..____T
e
[X J L]]
b
L L J
®
K
[J
[] 1 []
¢ L] []
[
[]
[]
[] [] []
[]

FIG.2. Possible ways of subdividing space: (a) bins; (b) quadtree (octtree);
(c) alternate digital tree. ‘

— DO: Loop over the points to be interpolated
— Obtain close points of given mesh from the octree;
— Obtain the elements surrounding the close points;
— DO: Loop over the close elements:
Evaluate N' from Eq. (4);
IF: Criterion (5) is satisfied:
Exit
ENDIF
ENDDO
— IF: We have failed to find the host element:
Use brute-force over the elements
ENDDO

Several improvements are possible for this algorithm. One
may, in a first pass, evaluate the closest point of the given mesh
to x, and only consider the elements surrounding that point.
Should this pass, which in general is successful, fail, the ele-
ments surrounding all the close points are considered in a second
pass. Should this second pass also fail (see Fig. 3 for some
pathological cases), one may either enlarge the search region,
or use the brute-force algorithm described above in Section 2.
The octree search algorithm is scalar for the first (integer) phase

RAINALD LOHNER

oint to be Interpolated

tosest Point of Known Grid

—Boundary

b

Point to be
Interpolated

losest Point of Known Grid

FIG. 3. Possible problems with closest point algorithm: (a) boundary gap:
(b) distorted elements.

(obtaining the close points and elements), but all other stages
may be vectorized. The vector lengths obtained for 3D grids
are generally between 12 and 50, i.e., sufficiently long for
good performance.

5. FASTEST KNOWN VICINITY ALGORITHM:
NEIGHBOUR-TO-NEIGHBOUR

Suppose that, as before. we only have a given grid and a
considerable number of points need to be interpolated. More-
over, assume that for any given point to be interpolated, an
element of the known grid that is in the vicinity is known. In
this case, it may be faster to jump from neighbour to neighbour
in the known grid, evaluating the shape-function criterion [12]
(see Fig. 4). If the element into which x falls can be found in
a few attempts (<10), this procedure, although scalar, will

Starting Etement
(IESTA)

Point to be
Interpolated

FIG. 4. Nearest neighbour jump algorithm.

ROBUST. VECTORIZED SEARCH ALGORITHMS 385

Outside

Inside

FIG. 9. Measuring surface concavity.

found their host element are at the top of the list. Such an
algorithm proceeds in the following fashion:

V.0. Set the remaining number of points NR_REMAINING_
POINTS=NR_FRONT_POINTS, where NR_FRONT_
POINTS is the total number of points to be interpolated
on the current front.

V.1. Perform steps N.3, A.7 in vector mode for all remaining
points NR_REMATINING_POINTS.

V.2. Write the NR_NEXT_POINTS points that do not satisfy
criterion (5) into a list LIST_OF _.CURRENT_POINTS
(1 :NR_NEXT_POINTS). If NR_NEXT _POINTS=0:
stop.

V.3. Write the NR_REMAINING_POINTS — NR_NEXT_
POINTS points that do satisfy criterion (5) into
LIST_OF _CURRENT_POINTS(NR_NEXT_ _POINTS
+1 : NR_REMAINING_POINTS).

V.4.Reorder all point arrays using LIST_OF_CURRENT_
POINTS. In this way, all points that have not yet found
their host element are at the top of their respective lists
(locations 1 : NR_NEXT_POINTS).

V.5.Set NR_REMAINING__POINTS=NR_NEXT_POINTS
and go to V.1.

One can reduce the additional memory requirements associ-
ated with indirect addressing by breaking up all loops over the
NR_REMAINING..POINTS remaining points into subgroups.
This is accomplished automatically by using scalar temporaries
on register to register machines. For memory to memory ma-
chines, a user-specified maximum group vector length must
be specified.

7. CONCAVE SURFACES

For concave surfaces, criterion (12.5) will not be satisfied
for a large number of surface points, prompting many brute-
force searches. The algorithmic complexity of the interpolation
procedure could potentially degrade to O(N3), where N, is the

Domatn |

Domatn 2

FIG. 10. Thin surface separating volumetric data.

number of boundary points. A considerable reduction of brute-
force searches may be attained if the concavity of the surface
can be measured. Assuming the unit face-normals n to be
directed away from the domain, a possible measure of concavity
is the visibility of neighbouring faces from any given face.
With the notation of Fig. 9, the concavity of a region along
the boundary may be determined by measuring the normal
distance between the face and the centroids of the neighbouring
faces. The allowable distance from the face for points to be
interpolated is then given by some fraction « of the minimum
distance measured:

d = ajmin(0, n- (x; — x;))|- (6)

Typical values for a are 0.5 < @ < 1.5. If a neighbour-to-
neighbour search ends with a boundary face and all other shape-
functions except the minimum satisfy Eq. (5), the distance of
the point to be interpolated from the face is evaluated. If this
distance is smaller than the one given by Eq. (6), the point is
accepted and interpolated from the current element. Otherwise,
a brute force search is conducted. The application of this proce-
dure requires some additional arrays, such as face-arrays, a
distance-array to store the concavity, and the relation between
element faces and the face-array.

8. VOLUMETRIC DATA SEPARATED BY
THIN SURFACES

The interpolation of volumetric data for regions separated
by thin surfaces is commonly encountered in computational
physics. Examples for problems of this kind are flow simula-

Domain 2

FIG. 11. Comparison of face and point normals. Note. IJ: normal of face
1J; I: normal of point L.

386 S RAINALD LOHNER

TR
A@%’
GavaTs

FIG. 12. Surface grids for a cube: NELEM = 34,661 (left); NELEM = 160,335 (right).

tions with thin separating sheets, such as trailing edges of
wings, parasols, sails, airbags, shells, and others. In many
of these cases, the surface points belonging to one of the
two sides may lie inside an element that is attached to the
other side. The situation is sketched in Fig. 10. Point A,
although inside element El, i.e., satisfying Criterion 5, should
be interpolated from element E2. In order to avoid such an
erroneous interpolation, the surface normals of the faces of
the known grid are compared with the point normals of the
points to be interpolated (see Fig. 11). If the scalar product

of these normals falls below a preset tolerance (e.g., —0.5).
the host element is rejected, and a brute search is performed.
The surface point normals are obtained by averaging the
normals of the faces surrounding them. While averaging, a
comparison of the normals for all the surrounding faces is
conducted. If these normals differ substantially, an edge or
corner is detected, and the points are marked accordingly.
For these points, the surface normal is considered as undefined.
and no comparison of surface normals is conducted. The
alignment test for surface normals just described can be

FIG. 13. Surface grids for a train: NELEM = 180,670 (left); NELEM = 243,068 (right).

AFOSR Final Report 16

APPENDIX 5: FLUID-STRUCTURE INTERACTION

16

- AlAA-95-2259

Fluid-Structure Interaction
Using A Loose Coupling Algorithm
And Adaptive Unstructured Grids

Rainald Lohner, Chi Yang and Juan Cebral
Institute for Computational Sciences and Informatics
George Mason University, Fairfax, VA 22030

Joseph D. Baum and Hong Luo
1710 Goodridge Drive, MS 2-3-1, McLean, VA 22102

Daniele Pelessone and Charles Charman

i
i
i
]
i
B
i
i
l General Atomics, San Diego, CA 92121
i
I
i
i
i
i
i

AVAVAVAVAVAVA
VAN
AN

Dyna3d Surface Mesh FEFLO96 Surface Mesh Dyna3d Abs. Velocity FEFLOS6 Pressu re

SHOCK-CYLINDER INTERACTION (T=1.41E-03)

26th AlAA Fluid Dynamics Conference
June 19-22, 1995/San Diego, CA

For permission to copy or republish, contact the American institute of Aeronautics and Astronauﬁcs
l 370 L'Enfant Promenade, S.W., Washington, D.C. 20024

ATAA-95-2259

FLUID-STRUCTURE INTERACTION USING
A LOOSE COUPLING ALGORITHM
AND ADAPTIVE UNSTRUCTURED GRIDS

Rainald Lohner!. Chi Yang!, Juan Cebral'.
Joseph D. Baum®. Hong Luo®,

Daniele Pelessone® and Charles Charman

3

!GMU/CSI, George Mason University, Fairfax. VA 22030. USA
2Science Applications International Corporation
1710 Goodridge Drive. MS 2-3-1. McLean. VA 22102. USA
3General Atomics. San Diego, CA 92121. USA

ABSTRACT

We present a loosely coupled algorithm: to combine Computational Fluid Dynamics (CFD) and Compu-
tational Structural Dynamics (CSD) codes in order to solve, in a cost-effective manner, fluid-structure
interaction problems. The basic fluid and structural dynamics codes are altered as little as possible. The
structure is used as the ‘master-surface” to define the extent of the fluid region, and the fluid is used as the
‘master-surface’ to define the loads. The transfer of loads, displacements, and velocities is carried out via
fast interpolation and projection algorithms. As shown, this fluid-structure algorithin can be interpreted as
an iterative solution to the fully-coupled. large matrix problem that results from the discretization of the
complete problem. Results from practical shock-structure interaction problems indicate that the proposed
approach offers a convenient and cost-effective way of coupling CFD and CSD codes without a complete

re-write of them.

1. INTRODUCTION

Both Computational Fluid Dynamics (CFD) and
Computational Structural Dynamics (CSD) have
reached a high degree of reliability for the simulation
of practical engineering problems. This has in turn
led to widespread acceptance and an increase in user-
friendliness for the codes most often used [1]. There
exist large classes of important engineering problems
that require the concurrent application of CFD aud
CSD techniques. Some examples are:

- Deformation or inflation of fabrics (parachutes.
airbags, parasols, tents, etc.),

- Aeroelasticity of flexible structures (thin, high-
aspect ratio wings, missiles, drones, etc.), where
the deformation due to aerodynainic forces is
such that significant changes in the flowfield are
induced. leading to different loads.

- Shock/Structure Interaction, where the deforma-
tion of the structure may change the flowfield and
the corresponding loads,

- Hypersonic Flight., where the deformation of
the structure due to aerodynamic and aerother-
mal loads is such that a significant variation of
the flowfield takes place (shock location, surface
heating, etc.), and

- Variable Geometry Vehicles, where the change
of geometry implies a transient phase in which

Copyright ©)1995 by the authors. Published by the
American Institute of Aeronautics and Astronautics.
Inc. with permission.

1

structures and flowfields are interacting strongly.
and, in most cases, non-linearly.

Most of these problems are presently solved either

iteratively, i.e. making several cycles of ‘CI'D run fol-

lowed by CSD run’, or by assuming that the C'FD

and CSD problem can be decoupled ‘to first order’.

In most of the airframe manufacturing companies. as

well as the shipyards. the respective CFD and ("SD

runs are performed in different divisions. leadiug to

time-delays, loss of information, and. most tmpor-

tantly, loss of insight.

The need to solve fluid-structure interaction probleis

has prompted a number of developments in this field

in recent years. The best way to sort these efforts is by

classifying them according to the physical and numer-

ical complexity employed for the fluid and structure

respectively (see Figure 1). For the fluid. the PDEs

solved are, in increasing order of physical complexity:

F1. Laplace/llelmholtz Operators (inviscid, irrota-
tional . isentropic flow),

F2. Non-Linear Laplace Operators (inviscid, irrota-
tional flow),

F3. Euler Equations (inviscid flow),

F4. Reynolds-Averaged Navier-Stokes [Equations
(viscous, time-averaged flow),

F5. Large-Eddy Simulations (viscous flow with
spatio-temporal cut-off), and

F6. Navier-Stokes Equations.

Each of these approximations requires belween one
and two orders of magnitude more CPU-time and
memory than the preceding one. For the linear
case, boundary element methods may be employed,
whereas all other approximations are typically ap-
proximated on a grid with spatial discretizations oh-
tained from Finite Difference, Finite Volume, Finite
Element. or Spectral Element techniques.
For the structure. the PDEs solved are, in increasing
order of physical complexity:
S1. 6 Degrees of Ireedom Integration (rigid body),
S2. Linear Elastic Models, either through

a) A Modal Decomposition. or

b) A Finite Element Discretization.
S3. Elasto-Plastic Models. and
S4. Elasto-Plastic Models with Contact. Rupture,

etc.

As before, each of these approximations requires be-
tween one and two orders of magnitude more CPU-
time and memory than the preceding one. For struc-
tures. the spatial discretization is typically carried out
using Finite Element techniques [2].
A major characteristic of fluid-structure algorithms
is the requirement to combine the discretizations for
the fluid and the structure. This provides a third
classification item (see Figure 2):
T1. Same surface discretization:
T2. Different surface discretization coupled via:

a) Interpolation,

b) Least-Squares,

c) Lagrange Multipliers,

d) A Third, so-called ‘Virtual® Surface Grid.
For the simple CSD approximations S1,52a, there is
no discretization of the structure per se. so that the
transfer of information between fluid and structure is
straightforward.
With this series of possibilities, we are now in a po-
sition to classify previous fluid-structure interaction
work. The two classic fields of structural acoustics
and aeroelasticity liave seen the largest amount of ac-
tivity, particularly in those instances where the fluid
and the structure were assunied as linear (inviscid.
irrotational. isentropic fluid, and linear elastic strue-
ture). Of the many references, we mention:
F1-S2b-T1: see Everstine [3,4]
F1-S2b-T1: see Jackson and Churistie [5]
F2-S2a: see Batina et al. [6]
F4-S1: see, e.g. Alonso et al. [7]
['3-52a: see Guruswamy [8], Rausch et al. [9]
F3-52b-T1: see Boschitsch and Quackenbush [10]
F4-S2b-T1: see Felker [11]
F4-52b-T2d: see Guruswamy and Byun [12]

The present effort is directed towards practical non-
linear applications, in particular structures that un-
dergo severe deformations due to aerodynamic or
aero-thermodynamic loads. For this reason. we start

ATAA-95-2259

immediately with the Euler and Reynolds-averaged
Navier-Stokes equations for the fluid, and the non-
linear. large-deformation equations for the structure.
Given that the geometrical complexity of the prob-
lems targeted for simulation can be severe, and the
deformation considerable, automatic grid generation
is a prime requirement. For this reason, unstructured
grids are employed for both the fluid and the struc-
ture. The elements used for the fluid are tetraledral.
whercas the elements for the structure are typically
bricks.

The remainder of the paper is organized as fol-
lows: Section 2 describes the coupling strategy used.
The main layout of a code based on the loose cou-
pling algorithm is described in Section 3. The in-
dividual codes chosen, FEFLO96 for the fluid. and
DYNAS3D for the solid region, are briefly described
in Section 4. Sections 3-8 discuss fast interpolation,
unwrapping of doubly defined faces, surface track-
ing, and load transfer techniques. In Section 9, some
demonstration runs are shown. Finally, conclusions
and an outlook for future development are given in
Section 10.

2. COUPLING ALGORITHIM

When trying to compare the possible coupling algo-
rithms. it is useful to start from the basic discrete
equation systems obtained for the solid and fuid re-
gions. For the solid region, we obtain, {from a given
Finite Element discretization, a system of equations
of the form:

Ms%+Dv3+Ku:f , (1)
where M,,v,,D. K, u.f denote, respectively, the
mass-tnatrix, velocity vector, damping matrix. stifl-
ness matrix, displacement vector and the loads vec-
tor. By splitting the degrees of freedom into those
touching the [luid region (‘sf’), and the remaining
ones, we obtain

Meg 0L d (vp
OM, | dt\vs)
£\ £\ [(L-ss ‘
() +(&) (b)) e

where the superscripts 7, ¢ denote internal (stiflness,
damping) and external forces respectively, L is the
load mmatrix and sy, the fluid stresses (pressures. shear
stresses) on the surface. For the fluid region, we ob-

tain, from a given Finite Element discretization. a
system of equations of the form:

My, 0 0 0
0 M; 0 0 d s
0 OM; 0f dtvy

0 0 0My, Vis
£, \' /f, \°¢
f, f, ,
£, | Tl ! (3)
fl’f s fl']:

where. for the sake of clarity, we have employed the
non-conserved variables: density, velocities and pres-
sure (p,v,p), and the discrete degrees of freedom
have been separated into those that touch the solid
(‘fs') and the rest. My, f,, f,.f. denote, respectively.
the mass-matrix. right-lhand side vectors for the den-
sity, pressure. and velocities. The combined fluid-
structure system now assumes the form :

M, 0 0 0 0

O0M, 0 0 0 ,S)

0 0 My 0 0 (—;12 vy =

0 0 0 My, + M,y 0 Vie

0 0 0 0 M, Ve

f, ‘ £, ° 0

f, 1, 0

fos + for + 0 A4
fos+f-’f f,,!!-{-f,'f L-sh

f, f, 0

where we have set v,y = vy, as required for Navier-
Stokes applications. For Euler problems, we only re-
quire an equality of the normal velocities v, = v} .
Given this complete system. we can now define pos-
sible coupling algorithins.

a) Tight coupling: We denote by tight coupling the
simultaneous update of all variables. including (and
most notably) those at the fluid/structure interface.
This unplies solving the complete system given by
Eqn.(4) in one step. The formulation allows for dif-
ferent grids in the CFD and CSD domains, but the
reader should realize that the derivation of the proper
projection integrals can be tedious in 3-D. From a
practical point of view, choosing this approach re-
yuires an almost complete re-write of the CFD and
CSD codes into one single coupled code. This implies
a loss of modularity, as well as the inability to couple
one CFD code with several CSD codes (or vice-versa).
Moreover. the ‘trade-oriented” aspect of each of the in-
dividual codes is blurred or lost, with the associated
extra expenses for retraining the user base.

b) Loose coupling: We denote by loose coupling the
separate update of the CFD and CSD domains, with

AIAA-95-2259

a transfer of variables at the interface. The most com-
mon way of realizing this approach is by selecting a
‘master surface’ for a certain variable, and interpolat-
ing or projecting the variable to the other domain at
the beginning of the next timestep. For CFD/CSD
problems, the most natural combination is to select
the CSD surface location and velocity as the ‘master-
grid’ for displacements, and the CFD grid as the
‘master-grid’ for the loads (pressures, shear-stresses).
The product of displacement times load yields work.
making the combination physically appealing. This
approach may be regarded as an iterative solution of
the combined system given by Eqn.(4). Each iterative
pass is composed of the following steps:
- Solve for CFD with imposed v,;,dv,;/dt;
- Solve for CSD with imposed s,; and
Mf, . (lV,f/(lt.

Note that unlike discretizations obtained from bound-
ary iutegral imethods, the error incurred by neglecting
the added mass My, + M,y is very small, as these
terins only contain contributions from the elements
adjacent to them. For an air/steel interface, the ratio
of densities is O(103), for water/steel O(10).

Depending on the time integration scheme used for
the CSD and CFD domains, several simplifying
strategies can be employed. Should explicit time in-
tegration be the proper way to advance the CSD and
CFD regions (as is the case for the class of probleins
considered here), the loose and tight coupling systems
are almost identical, the only error being the mass of
fluid for the first row of elements adjacent to the solid.
Should implicit time integration be the proper way to
advance the CSD and CFD regions (as is the case
for low-frequency aeroelastic applications), the LIIS
of the time-discrete form of Eqn.(4) will contain en-
tries of the Jacobians of fi. In this case, the iterative
strategy discussed above will have to be used for the
loose coupling approach if equivalency with the tight
coupling system is to be achieved. Finally, if only a
steady-state solution for the coupled fluid-structure
system is sought, the loose coupling approach may he
used either with explicit or implicit time integration
for the CSD and CFD domains without incurring any
errors.

The variables on the boundaries are transferred back
and forth between the different codes by a master
code that directs the multi-disciplinary run. Each
code (CFD, CSD, CEM, ..) is seen as a subroutine,
or object, that is called by the master code. This
implies that the transfer of geometrical and physical
information is performed between the different codes
without affecting their layout, basic functionality, and
coding styles. This is seen as the main advantage of
this approach.

A tremendous amount of man-years has been devoted

to CFD and CSD codes. incorporating into them all
the minor features that make these codes efficient.
practical. user-friendly tools. The central assuiption
made here is that these codes will not be rewritten
again, should be left alone in their present and [uture
development, and nevertheless can be combined efli-
ciently to solve strongly coupled CFD/CSD problems.
For structures that break, rupture, or deform
markedly due to the loads exerted by the {luid. the
corresponding CFD and/or CSD grid will require
some form of remeshing. This remeshing can either
be local or global in nature. If this remeshing can
not be done automatically, the usefulness of such an
approach will always remain limited. Therefore, auto-
matic gridding techniques are an enabling technology
for this class of problems. The CFD code employed
here has. as one of its salient features, an automatic
remeshing capability. This capability is very impor-
tant for the class of fluid-structure interaction prob-
lems considered. and will be demonstrated in the ex-
amples shown below.

3. APPROACI CHOSEN

As stated before. the loose coupling approach is
followed here to bring together, in a general, cost
effective way, CFD and CSD codes currently in
widespread use, in order to solve strongly coupled
CFD/CSD problemns. The global timestepping algo-
rithm, sketched in Figure 3, proceeds as follows:

- Set: istar=1,istop=0
- call CFD-code(.., istar, ..)
- Read in CFD-Data
- Initialize all CFD Arrays
- call CSD-code(.., istar, ..)
- Read in CSD-Data
- Initialize all CSD Arrays
- if(istop.EQ.0) then
- call CFD-code(.., istop, tends, tendf, ..)
- call CSD~code(.., istop, tends, tendf, ..)
- endif

Here tendf, tends denote the ending times for the
CFD and CSD code respectively. The algorithm out-
lined above clearly leaves the possibility open to per-
form N-CI'D-code steps, followed by M-CSD-code
steps, 1.e. asynclironeous timestepping. It is felt that
this i1s of considerable importance in order to keep
the algorithin as general as possible. As one can see.
both the CFD and the CSD codes are called as sub-
routines. The arguinent list passed contains all the
variables required for the inter-grid transfer of infor-
mation. Having outlined the coupled procedure, we
can now examine the individual domains niore closely.

ATAA-95-2259

a) For the CFD code:

Variables passed in:
- Ending Time of CSD Step: tends
- Position/Velocity of Surface Points:
coobs, vpobs
Then:
- Impose Surface Positions/Velocities from:
coobs, vpobs at time tendf
- if(time.lt.tends) then:
- Advauce CFD Solution One Timestep
- Update CFD Mesh
- Refine/Remesh CFD Domain As Required
- Update time
- endif
- Set tendf=time
- Compute Loads {Pressure, ..) for the CSD
Surface Points
- return
Variables passed out:
- Ending Time of CI'D Step: tendf
- Loads for the CSD Surface Points: loabs

b) or the CSD code:

Variables passed In:
- Ending Time of CFD Step: tendf
- Loads at the Wetted Points: loabs
Then:
- Impose Surface Loads from CFD Code
- if(time.lt.tendf) then:
- Advance CSD Solution One Timestep
- Update CSD Mesh Accordingly
- Reline/Remesh 'SD Domain As Required
- Update time
endif
- Set tends=time
Compute Positions and Velocities for the Wetted
(CFD) Surface Points
- return
Variables passed out:
- Ending Time of CSD Step: tends
- Position/Velocity of Surface Points:
coobs, vpobs

i

4. CODES SELECTED

The selection of the respective CFD/CSD codes was
made according to the following guidelines:
- The code must be well proven;
- The code must be benchmarked:
The code must be supported;
The code must have a user base/community:

The two candidate codes chosen were: FEFLO96 for
the fluid and DYNA3D for the solid. A brief

overview of the physics being miodelled. the numer-
ical techniques employed, as well as useful engineer-
ing, meshing and software options available in these
two codes is given in the sequel.

4.1 CFD CODE: FEFLO96

a) Physics: FEFLQ96 is a simulation code for com-
pressible {lows. The equations solved are the Euler,
Laminar or Reynolds-averaged Navier-Stokes equa-
tions, as well as the linear acoustics equations. The
turbulence models available are the Smagorinsky and
Baldwin-Lomax models. as well as a user-input option
via subroutine. Work is in progress on the k-epsilon
and k-omega models. Equations of state supported
by FEFLO96 include ideal polytropic gas, real air
EOS table look-up. water EOS table look-up, and a
link to the general SESAME library of EOS. In order
to handle situations with moving bodies and/or mov-
ing grids. the equations are solved in the Arbitrary
Lagrangean-Eulerian frame [13].

Flows with particles are treated via a second solid
phase. The particles interact with the fluid, exchang-
ing mass, momentum and energy, and are integrated
n a time-consistent manner with the fluid.

b) Numerics: The spatial discretization is accoin-
plished via finite element techniques on unstructured
tetrahedral grids. In order to achieve high execution
speeds, edge-based data structures are used. Both
central and upwind flux (van Leer [14], Roe [15]) for-
mulations are possible. For the temporal discretiza-
tion, both Taylor-Galerkin and Runge-Kutta time
integration schemes are available. Monotonicity of
the solution may be achieved through a blend of
second and fourth order dissipation [16], pressure-
based. Flux-Corrected Transport (FCT) [17], or clas-
sic TVD limitors. The particles are integrated us-
ing a second-order Runge-Kutta scheme, and optimal
tracking techniques [18] have been implemented to ex-
pedite the transfer of information between fields and
particles.

¢) Engineering: In order to handle situations with
moving bodies, FEFLO96 offers a variety of options:
prescribed motion, 6-DOF integration based on aero-
dynamic forces, and link to CSD codes. .
A variety of boundary conditions can be prescribed
to simulate as faithfully as possible engineering flows:
sub-,tran-, and supersonic in/outflow, total pressure
inflow b.c.. static pressure, mach-number and normal
flux outflow b.c.. porous walls, and periodicity. At the
same time, a large variety of diagnostics is produced
by the code to track or display specific parts of the
flowfield that are of special interest: 0-D probes (e.g.
for station time history), 1-D line segments for x/y
display, 2-D planes or iso-surfaces for contouring, flux
trough surfaces, force and moment data on surfaces
or bodies. on-line display of the flowfield, etc.

[

ATAA-95-2259

d) Meshing Options: FEFLO96 allows for automatic
adaptive h-refinement [19] and automatic remesh-
ing [20.21] in order to enhance the solution accuracy,
even for situations with moving bodies.

e) Software: FEFLO96 is written in FORTRAN-
77 and fully vectorized. Renumbering techniques [22]
are used extensively in order to avoid cache-misses
on RISC-based machines. Parallelization is achieved
via domain splitting [23]. The code runs on all ma-
jor workstations, vector-supercomputers and paralle]

platforms.

FEFLO96 is a well-proven and benchmarked code
used extensively by the anthors and others in the C'FD
community [24-28].

4.2 CSD CODE: DYNA3D

a) Physics: DYNAS3D is a simulation code especially
suited for solids undergoing rapid and severe defor-
mation. The conservation equations for momentiun
are written and solved for in the Lagrangian frame of
reference. The large deformation, large strain fornu-
lation is employed throughout. The code incorporates
forty-one different material models, among them lin-
ear elastic, linear elastic-plastic, strain-rate sensitive
steel with fracture, hardening material models, a ge-
ological cap model for soil materials, and a variety
of concrete models that simulate fracturing behav-
ior {29]. DYNAS3D also offers eleven equations of
state models, including equations of state for high ex-
plosives.

b) Numerics: The spatial discretization is acconi-
plished via finite element techniques on unstructured
grids. The elements available for structural mod-
elling are one truss and two beam elements, several
quadrilateral shell elements (e.g. Belitschko-Tsai [30],
Hughes-Liu [31], YASE [29], and QP [32], and hexa-
heral elements with one-point integration for the 3-D
solids. The shells allow for nltiple integration points
across the thickness, making it possible to accurately
treat nonlinear plastic behavior of simple and com-
posite shells. Several hourglass control options may
be used. We have found that the Flanagan-Belitschko
hourglass control [33] works best for the unstructured
hexahedral grids we most often employ. The temporal
discretization is carried out using an explicit central
difference method, which is conditionally stable.

c) Engineering: DYNA3D incorporates a large num-
ber of convenient features that prove especially useful
for realistic engineering problems. The following is a
non-exhaustive list of those features that were par-
ticularly relevant to our class of applications. The
user may prescribe non-reflecting boundary condi-
tions which elitninate stress wave reflections at model

boundaries. making it possible to use smaller mod-
els. There are twelve types of sliding-interface algo-
rithms to treat different interface conditions between
interacting parts. Sliding-interface algorithis permit
the treatment of coutact conditions with friction. gap
opening, spotwelds. etc. [For civil engineering applica-
tions, there are rebar-concrete interaction algorithms
which include degradation and failure of bond.

A large variety of diagnostics is produced by the code
to track or display specific parts of the structure that
are of special interest: 0-D probes (e.g. for station
time history), 1-D line segments for x/y display, 2-
D planes or iso-surfaces for contouring, stress. strain,
force and moment data on surfaces or fields. etc.

d) Meshing Options: DYNAS3D in its current state
does not allow for automatic adaptive h-refinement or
automatic remeshing. Work is currently in progress
to incorporate these feature into DYNA3D .

e) Soltware: DYNA3D is written in FORTRAN-
77 and fully vectorized. The code was written with
CRAY-type machines in mind. but runs well on all
major workstations. vector-supercomputers and some
parallel platforins. It employs dynamic memory allo-
cation, making it capable of solving very large prob-
lems.

DYNAS3D is a well-proven and benchiarked code
used extensively by the authors and others in the CSD
community [29.34.35]. DYNA3D was developed at
the Lawrence Livermore National Laboratories by Dr.
John Iallquist with contributions from Dr. David
Benson and Dr. Robert Whirley. DYNA3D has
been successfully used for a large number of applica-
tions. including nuclear and conventional weapon de-
sign, car and airplane crashworthiness studies, analy-
sis of reinforced structures such as bunkers, tunnels,
and silos. as well as spent nuclear shipping cases. It
is supported and maintained by Lawrence Livermore
National Laboratories.

5. SURFACE TO SURFACE INTERPOLATION

One of the main aims of the proposed approach is
to couple the different codes in such a way that each
one of the codes used is modified in the least possible
way. Moreover, the option of having different grids
for different disciplines (CFD/CSD/CEM..), as well
as adaptive grids that vary in time, implies that in
most cases no [ixed common variables will exist at
the boundaries. Therelore, fast and accurate interpo-
lation techniques are required. As the grids may be
refined/coarsened during timesteps, and the surface
deformations may be severe, the interpolation proce-
dures have to combine speed with generality. In what
follows, we will use the word interpolation as refer-
ing to the process of finding, from a list of faces. the
one closest to a given point, and the word evaluation

ATAA-95-2259

to the actual product of shape-functions with nodal
values, e.g. in order to obtain the pressure at a point
on a face.

Consider the problem of fast interpolation between
two surface triangulations. Other types of surface
elements can be handled by splitting them into tri-
angles, so that what follows may be applied to such
gridtypes as well. In the sequel, we will denote the
triangular surface elements as faces. The basic idea
is to treat the topology as 2-D, while the interpola-
tion problem is given in 3-D -::ace. This implies that
further criteria. like relative distances normal to the
surface. will have to be employed in oder to make
the problem unique. The basic procedure is to con-
pute the shape-functions of the surface triangles for
any point being interpolated. Using the notation of
Figure 4, we can write:

xp = Xy + Z azgl ’ (5)
=13
where
B1 X &2
2=X12—X0 , 3= 77— (Ga,b)
g1 1, 0 83 g1 x 22|
al?= N2 Q0 =1l -a® . (6e. d)

Point x, may be considered as being on the surface
face UT:

min(N' 1 =N >0 . Vi=0.1,2 , (7Ta)

and

dn, = !a3g3l < oy . (TI))

Here 8, denotes a tolerance for the relative distance
normal to the surface face. Many search aud in-
terpolation algorithms have been devised over the
years. We have found that for generality, a layered
approach of different interpolation techniques works
best. Wherever possible, a vectorized advancing front
neighbour-to-neighbour algorithm is employed as the
basic procedure [36]. Should this fail, octrees [37.38]
are employed. Finally, if this approach fails too, a
brute force search over all the surface faces is per-
formed [36]. For realistic 3-D surface geometries, the
interpolation of surface grid information may be con-
plicated by a number of the factors. The first of these
factors is the proper choice of é,, i.e. the proper an-
swer to the question: ‘Ilow close must a face be to a
point in order to be acceptable ?” This is not a trivial
question for situations where narrow gaps exist in the
CFD mesh. and when there is a large discrepancy of
face-sizes between surface grids. Qur experience indi-
cates that for attached surface tracking, the choice

® =005 . (8)

by < cn - lgl X g2
works reliably. although the constaut ¢,, may be prob-
lem dependent. A second complication often encoun-
tered arises due to the fact that Eqn.(7a) may never
be satisfied (e.g. the convex ridge shown in Iig-
ure 3a), or may be satisfied by more than one surface
face (e.g. the concave ridge shown in Figure 5b). In
the first instance thé criterion given by Equ.(7a) may
be relaxed somewhat to

min(N. 1 =Ny >e , Vi=0,1,2 , (9)
where ¢ is a small number. For the second case. the
surface face with the smallest normal distance d,, is
selected. We remark that in both of these instances
the interpolation error is unaffected by the final host
surface face. as the interpolation weights are such that
only the points belonging to the ridge are used [lor
interpolation. However, not choosing the correct face
may lead to CFD elements with negative volumes as
CFD surface points are dragged to the incorrect (!SD
surface. We have found that it is very important to
take the face that has the smallest distance to tlhe
point being interpolated in order to mitigate these
problems. For situations close to corners, gaps. or
multi-body configurations. an exhaustive search over
all faces will be triggered. In order not to check in
depth the complete surface mesh, only the faces that
satisfy the relaxed closeness criteria € > —1, ¢, < 0.5
are considered. The face with the closest distance
to the point is kept. If a face satisfies [Eqn.(7a), the
closest distance is indeed d,,. Should this not be the
case, the closest distance to the three edges i) of the
face is taken:

6 = minyj |x, — (1 = 345)x; — Fi5x| (10.a)

_ (xp = xi) - (x5 — xi)

3 = 10.0
il ey —— (10-6)

Should two faces have the same normal distance. the
one with the largest minimum shape-function o',
i =0.1,2is retained.

A third complication arises for cases where thin shells
are embedded in a 3-D volumetric fluid mesh. For
these cases. the ‘hest’ face may actually lie on the
opposite side of the face being interpolated. This am-
biguity is avoided by defining a surface normal. and
then ouly considering the faces and points whose nor-
mals are aligned, i.e. those for which

05 . (11)

ny-n, >cs , s

-1

ATAA-95-2259

Here n;, n, denote the face and point-normals respec-
tively. The definition of a proper point-normal from
the face-normals can be problematic for non-snooth
surface, such as those obtained when severe buckling
or wrinkling occurs. For these cases, all faces are con-
sidered for interpolation.

Experience indicates that it is advisable to perform a
local exhaustive search for all faces surrounding the
best face found in order to obtain the face that satis-
fies Eyns.(7,10) as best possible.

6. UNWRAPPING DOUBLY DEFINED FACES

Consider the conmunon case of thin structural ele-
ments, e.g. roofs, walls, stiffeners, etc. surrounded
by a fluid medium. The structural elements will be
discretized using shell elements. These shell elements
will be affected by loads from both sides. Most ('SD
codes require a list of faces on which loads are exerted.
This inplies that the shell elements loaded from both
sides will appear twice in this list. In order to be able
to incorporate thickness and interpolate between ('SD
and CFD surface grids in a unique way, these dou-
bly defined faces are identified, and new points are
mtroduced. The first step is to identify the doubly
defined faces. A linked list that stores the faces sur-
rounding each point is constructed. Each face is then
checked by performing an exhaustive comparison of
the points of each of the faces surrounding the first
node of each face. This will identify doubly defined
faces in O{N;) complexity ,where Ny is the number
of faces. Should this check reveal the existence of
doubly defined faces, new points are introduced using
an unwrapping procedure. A faces-surrounding-faces
list fsufa(nedfa,nface) is built, where nedfa de-
notes the number of edges per face, and nface the
uumber of faces. As any given face may have mul-
tiple neighbour faces across an edge, it is important
to select the most suitable neighbour (see Figure 6).
This is done by comparing the scalar products of the
face-normals between neighbours, as well as the visi-
bility of neighbour points from the current face. The
rest of the procedure is best explained in the following
pseudo-code form:

Initialize point array 1poin(1:npoin)=0

do iface=1,nface ! Loop over the faces
do inofa=1,nnofa ! Loop over the face-nodes
ipoin=bface(inofa,iface) ! Point number
if(ipoin.gt.0) then
if(1poin(ipoin).eq.0) then
The point has not yet been surrounded =
ipold=ipoin
ipnew=ipoin
else
As the point has aiready been surrounded and
the point was lelt unconsidered:
introduce a new point
ipold=ipoin
npoin=npoin+i
ipnew=npoin
Transcribe coodinates and points of ipold
to ipnew
endif
Surround the point with faces obtained from fsufa
that have point ipold in common
Modify bface. setting entry of ipold to ~ipnew
Mark the point as surrounded: 1poin(ipoin)=-1
endif
enddo
enddo

Restore bface to positive values.

The unwrapping of multiply defined faces is shown
in Figure 7. Having unwrapped the surface mesh, a
unique set of point-normals that point into the CFD
field is obtained. Taking into consideration the thick-
ness of each shell, the point coordinates used for in-
terpolation onto tlie C'I'D surface are computed.

7. SURFACE TRACKING TECINIQUES

An important question that needs to be addressed is
how to make the different grids follow one another
when deforming surfaces are present. Consider the
typical aeroelastic case of a wing delorming under
aerodynamic loads. For accuracy purposes, the CFD
discretization will be fine on the surface, and the sur-
face will be modelled as accurately as possible from
the CAD-CAM data at the start of the simulation.
On the other hand. a CSD discretization that models
the wing as a series of plates may be entirely appropri-
ate. If one would force the CFD surface to follow the
CSD surface, the result would be a wing with no thick-
ness, clearly inappropriate for an acceptable CFD re-
sult. On the other hand. for strong shock/object in-
teractions with large plastic deformations and possi-
ble tearing, forcing the CFD surface to follow exactly
the CSD surface is the correct way to proceed. These
two examples indicate that more than one strategy

[0°2)

ATAA-95-2259

may have to be used to interpolate and move the sur-
face of the CFD mesh as the structure moves. We
have incorporated the following techniques:

a} Exact tracking with linear interpolation. This is
the most straightforward case, but, as could be seen
from the example described above, may lead to bad
results.

b) Exact tracking with quadratic interpolation. In
this case, the surface normals are recovered at the
end-points of the surface triangulation. For each edge
of the triangulation, the midpoint is extrapolated us-
ing a llermitian polynomial (see Figure 8). In this
way, quadratic triangles are obtained. The surface
is then approximated/interpolated using this higher
order surface.

¢) Tracking with initial distance vector. In many in-
stances, e.g. thick shells, the CFD and CSD domains
will never coincide. A way to circurnvent this dilemma
1s to compute the difference vector between the initial
CSD and CID surfaces. and maintain this vector (al-
lowing for translation and rotation) for the duration
of the coupled run. Several options are possible here.
and we are still actively exploring which is the hest
way to proceed.

An mportant area currently under investigation is
liow to handle, in an eflicient and automatic way.
models that exhibit incompatible dimensionalities.
An example for such a ‘reduced model’ would be an
aeroelastic problem where the wing structure is mod-
eled by a torsional beam (perfectly acceptable for the
lowest eigenmodes), and the fluid by a 3-D volumetric
mesli. It is easy to see that the proper specification
of movement for the CI'D surface based on the 1-D
beam. as well as the load transfer from the fluid to
the beam, represent non-trivial problems for a geu-
eral, user-friendly computing environment.

8. CFD-CSD LOAD TRANSFER

During each global cycle, the CFD loads have (o be
transferred to the CSD mesh. Simple point-wise in-
terpolation can be employed for those cases in which
the elements of the CSD surface mesh are smaller or
of sinilar size than the elements of the CFD surface
mesh. However, this approach is not conservative.
and will not vield accurate results for the conunon
case of CSD surface elements being larger than their
CFD counterpart. Considering without loss of gener-
ality the pressure loads only, it is desirable to attain:

ps(x) = ps(x) (12)

while being conservative in the sense of:

f:/p,udl‘:/p;nd[‘ , (13)

where py, ps denote the pressures on the fluid and
solid material surfaces, and n is the normal vector.
These requirements may be combined by employing a
weighted residual method. With the approximations:

pe = Nipie . pr=Nipis (14)

we have

/ NiNidTp;, = / NiNidUpj; . (16)
which may be rewritten as:

Mp, =r=Lp; . (L7)

Here M is a “consistent mass-matrix’, and L a ‘load-
ing matrix’. The solution of this coupled system of
equations is obtained iteratively in the now familiar
way:

M;~(pi+1—p§).—_—r—M-pi . (18)

where M, is the ‘lumped mass matrix’. Typically,
three iterations are sufficient to achieve an accurate
result. One can also show that Eqn.(16) is equivalent
to the least-squares minimization of

I :/[p, — ps)Pdr, (19)

We remark that the weighted residual method is
conservative in the sense of Eqn.(13). The sum
of all shape-functions at any given point is unity
(Y_; Ni(x) = 1), and therefore:

/psd[‘: /N_;"(ll’pjs =/Z/V:Nf(ll‘pjs
i

= Z/N;‘N{drpj, = Z/N;N;'drpj,
:/ZN;'N;'drp,-,:/derpj,=/p,dr (20)

The most problematic part of the weighted residual
method is the evaluation of the integrals appearing
on the right-hand side of Eqn.(16). When the CFD
and CSD surface meshes are not nested. this is a
formidable task. We have chosen to use (Gaussian
quadrature. Two options are possible:

Option 1: Perform a loop over the CSD faces

s

I‘i = / ZV:JV} dF[)Jf

=AY W Ni(xg)pp(xgp) - (21)
s gp

9

ATAA-95-2259

In this case, the shape-functions Ni(x,,) at the
Gauss-points are known, and the unknown pressure
pr(xgp) = N}(xgp)pjf at the Gauss-points is inter-
polated. This procedure is non-conservative, as the
quadrature points of the solid faces may miss some of
the [luid surface pressures.

Option 2: Perform a loop over the CFD faces
= /NsiIV}.d[‘pjf

=Y A WopNi(xep)ps(xgp) - (22)
f gp

In this case, the pressures pr(xgp) = N}(xg,,)pjf at
the Gauss-points are known, and the unknown shape-
functions Ni(x4p) have to be interpolated. This pro-
cedure is strictly conservative. as the loop is over the
CFD faces, making sure that all pressures present are
transmitted to the CSD surface. On the other hand.
this procedure can be inaccurate: if the fluid faces are
substantially larger than the solid faces, some solid
points may not receive any fluid pressure contribu-
tions at all. Such a situation has been sketched in
Figure 9. In order to avoid these inaccuracies, the
face-sizes of the solid faces are interpolated to the
fluid surface points. If a large discrepancy in size is
encountered, the number of Gauss-points for the fluid
faces is adaptively increased. This corresponds to an
adaptive reflinement of the fluid faces to match the
size of the solid faces.

Many of the CSD codes accept only a constant load
over each of the surface faces. If this is the case.
the elaborate procedure just described may be sim-
plified by taking a constant weighting function P! for
each one of the solid faces. The weighted residual
statetient, for the second. conservative option. then
becoines:

Aisbis = 3 Ap Y Wop Pi(Xgp)ps(xgp) . (23)
f gp

Given that the polynomial order of the integrals
has been reduced from quadratic to linear, only one
Gauss-point is required for exact integration. Alter-
natively, one can compute pressures as before assum-
ing a linear or bilinear pressure disctribution. aud
then average over the nodes of a surface face. This
will tend to spread the loads more evenly over the
structural surface faces, avoiding ‘ringing’.

9. EXAMPLE RUNS

The main area of applications envisioned for the
present {luid-structure algorithm is the interaction of
shocks with structures. Therefore, a sertes of struc-
tures were hit by shocks of varying strengths in order
to see the ensuing effect.

9.1 Shock-Cylinder Interaction: For this case. we as-
suine that a cylindrical shell of constant thickness and
elastic/ideal plastic material (mild steel) is clamped
to the soil. A strong shock impacts on the shell. lead-
ing to buckling aud subsequent collapse. The initial
counditions for the fluid. as well as the geometrical and
material parameters for the solid are given in Iig-
ure 10a. The CFD mesh consisted of approximately
20 Kpts and 100 Ktets. The CSD mesh consisted of
approximately 2.3 Kpts and 2.3 Kyshells. Both the
CFD and the ('SD grids were not adapted in time.
A study was conducted to assess the elfect of shell
thickness on the collapse of the cylinder. Figures 10b-
e show the surface grids for the CFD and CSD do-
mains at different times, as well as the surface pres-
sure {CI'D) and surface velocity (CSD). Althouglh the
CSD surface appears to cousist of triangular elements,
these are quadrilateral faces that have been split into
triangles along the shortest diagonal. One can read-
ily observe the onset of buckling, as well as the com-
pletely different buckling shape for the two different
cases. Note also the change in stagnation pressures
due to the chiange in surface geometry. During these
runs, the CI'D region was remeshed two times glob-
ally, and several times locally, with no modification
to the surface mesh.

9.2 Shock-Shelter Interaction: For this case. a closed
semicylindrical shelter was assumed. The shelter was
considered to be reinforced at the outer edges, the
rim, as well as the middle. As before, an elastic, ide-
ally plastic material was used for the shell. A stroug
shock impacts on the shelter, leading to severe defor-
mations. The CFD mesh, which was adapted every
7 timesteps, varied between approximately 15 Kpts
and 150 Kpts (80 Ktets and 800 Ktets). The CSD
mesh, which was not adapted in time, consisted of
approximately 1.25 KKpts and 1.25 Kgshells. Tig-
ures lla-c show the surface grids and pressures of the
shelter at three time instants during the run. Note
the grid adaptation for the CFD domain, as well as
the onset of severe deformation in the unreinforced
regions due to shock impact.

9.3 Four-Roomn Experiment: For this case, a test
section consisting of four rooms was selected. In
room 1 (see Figure 12a) an explosion takes place. The
CFD mesh consisted of approximately 260 Kpts and
1.3 Mtets. Two (!SD miodels were employed. The
first consisted of approximately 50 Kbricks that were
generated by splitting a coarser mesh of tetrahedra.

10

ATAA-95-2259

This mesh had no reinforcement bars (re-bars) in the
model. Rather, the reinforced concrete was treated as
a single material with properly averaged elasto-plastic
parameters. The second mmodel consisted of approxi-
mately 50 IKbricks that had regular brick-shape. lor
the walls. approriate reinforced concrete and re-bar
models were specified. The different grids are shown
in Figures 12b.c. Figures 12d,e show the surface pres-
sures for the C'F'D region. as well as the absolute value
of the surface velocities for the CSD region at differ-
ent tites during the run. Note that in one instance. a
large velocity is exhibited by the structure for the wall
separating the lower rooms, even though the shock
waves have not yet reached this section of the do-
main. This is because the wall acts as a stiff beani.
producing a rotational motion around the line where
the four inner walls cross. Thus, a positive velocity
in the upper wall results in a negative velocity for
the lower walls. Figure 12f shows the comparison to
experimmental measurements for the pressures at four
locatious on the walls of the first room. Note the
excellent agreement between the predictions and the
measured data. Figure 12g shows the comparison of
the displacements predicted for the two different C'SD
models with expertmental measurements at a point on
the upper interior wall. Observe that the experimen-
tal data exhibits a linear drift. This phenomenon is
cominonly observed for accelerometers. Taking into
account this drift, one can see that the correlation
between the experiment and the predictions is quite
good. One can also see that the more detailed model.
which included re-bar models, gave a better correla-
tion with the experiment.

9.4 Truck: This last case shows some preliminary re-
sults for a realistic shock-object interaction case. The
objective in describing this case is not to show de-
tailed comparisons with experiments. A separate re-
port is being prepared for this purpose. Rather, the
alm is to show what is possible once a general set of
interpolation and projection techuniques is combined
with interactive pre-processors and production (:SD
and CFD codes. The geometry considered is that
of a h-ton Army truck subjected to a strong shock.
Some of the geometric data was obtained in Auto-
Cad format. Simplifying assumptions were made for
the engine, transmission and transmission shalts: all
of these were simulated as rigid solids. The springs
and tires were simulated with eight-noded brick ele-
ments of appropriate material behaviour. The conn-
plete CAD model for the structure, which was ob-
tained in a week, consisted of 5,928 points, 3,000 lines.
and 1,386 surfaces. and is shown in Figure 13a. Once
the CAD model for the structure was obtained. the
CAD model for the surface was obtained in a single
step by invoking an ‘invert and unwrap’ option in the
pre-processor used. This option removes all the inte-

rior CSD CAD data, leaving only the wetted surface
data for further use, and unwraps doubly loaded sur-
faces (e.g. shells). The CAD model for the fluid con-
sisted of 6,306 points. 3,718 lines. and 1,604 surfaces.
The FEM models totalled I Kbeams, 50 IK¢shells,
50 Kbricks and 22 wmaterials for the structure, and
200 Kpoints and 1 Mtets for the fluid. The surface
discretizations of these grids are shown in Figure 13D.
Figures 13c-d show the results for two different times
during the run.

10. CONCLUSIONS AND OUTLOOK

A fluid/structure interaction algorithm based on the
loose coupling of production CFD and CSD codes has
been described. The algorithm allows a cost-effective
re-use of existing software. with a minimum amount
of alterations required to account for the interaction
of the different nedia. Several example runs using
FEFLO96 as the CI'D code, and DYNAZ3D as the
CSD code. demonstrate the effectiveness of the pro-
posed wmethodology.

Future developments will center on:

- Treatment of reduced models. or models with in-
compatible dimensionalities:

- Improved reliability for complex geometries un-
dergoing severe deformations. especially when
contact is present;

- Further improvements to handle not only accu-
rate load conserving projection, but also work
conserving projection;

- Extensions to Navier-Stokes problems for the
CFD codes:

- Inclusion of implicit CSD codes, such as NAS-
TRAN. ANSYS. or NIKE-3D to treat steady-
state or low frequency problems:

- Extensions to other multidisciplinary problems,
including thermal and/or electromaguetic loads.

1. ACKNOWLEDGMENTS

This work was partially supported by DNA and
AFOSR, with Drs. Mike Giltrud and Leonidas Sakell
as the technical monitors. The authors would also like
to thank CRAY Research for its support on the form
of many hours on advanced C-90 supercomputers.

12. REFERENCES

[1] CSD codes such as NASTRAN, ANSYS,
ABAQUS, MARC, NISA. ADINA. DYNA3D,
PAM-CRASH. etc.. CFD codes such as FLU-
ENT, FIDAP, STAR-CD. RAMPANT. FEFLO.
PAM-FLOW. ete.

[2] O.C. Zienkiewicz and R. Taylor - The Finite El-
ement Method: McGraw Hill (1988).

[3] G.C. Everstine and F.M. Ilenderson - Coupled
Finite Element/Boundary Element Approach for

il

ATAA-95-2259

Fluid-Structure Interaction; J. Acoust. Soc. Ant.
R7. 5, 1938-1947 (1990).

[4] G.C. Everstine - Prediction of Low Frequency Vi-
brational Irequencies of Submerged Structures:
J. Vibrations and Acoustics 113, (1991).

[5] P.S. Jackson and G.W. Christie - Numerical
Analysis of Three-Dimensional Elastic Mem-
brane Wings: AIAA J. 25, 5, 676-682. (1987).

[6] J.T. Batina, R.M. Bennet, D.A. Seidel, H.J. Cun-
ningham and S.R. Bland - Recent Advances in
Transonic Computational Aeroelasticity; Comp.
Struct. 30. No.1/2. 29-37, (1988).

[7] J. Alonso, L. Martinelli and A. Jameson - Multi-
grid Unsteady Navier-Stokes Calculations with
Aeroelastic Applications; AIAA-95-0048 (1995).

[8] G.P. Guruswamy - Unsteady Aerodynamic and
Aerolastic Calculations for Wings Using Euler
Equations: AIAA J. 28, 3, 461-469 (1990).

[9] R.D. Rausch, J.T. Batina and ILT.Y. Yang
-~ Three-Dimensional Time-Marching Aerolas-
tic Analyses Using an Unstructured-Grid Euler
Method; AIAA J. 31,9, 1626-1633 (1993).

[10] A.H. Boschitsch and T.R. Quackenbush - ligh
Accuracy Computations of Fluid-Structure In-
teraction in Transonic Cascades; AIAA-93-0485
(1993).

[11] F.F. Felker - Direct Solution of Two-Dimensional
Navier-Stokes Equations for Static Aeroelasticity
Problems: AIAA J. 31, 1, 148-153 (1993).

(12] G.P. Guruswamy and C. Byun - Fluid-Structural
Interactions Using Navier-Stokes Flow Equations
Coupled with Shell Finite Element Structures:
ATAA-93-3087 (1993).

[13] J. Donea - An Arbitrary Lagrangian-Eulerian
Finite Element Method for Transient Dynamic
Fluid-Structure Interactions; Comp. Meth. Appl.
Mech. Eng. 33, 689-723 (1982).

{14] B. van Leer - Towards the Ultimate Conser-
vative Scheme. II. Monotonicity and Conser-
vation Combined in a Second Order Schene:
J.Comp.Phys. 14, 361-370 (1974).

[15] P.L. Roe - Approximate Riemann Solvers,
Parameter Vectors and Differetice Schemes:
J.Comp.Phys. 43. 357-372 (1981).

[16] A. Jameson - Artificial Diffusion, Upwind Bias-
ing, Limiters and Their Effect on Accuracy and
Multigrid Convergence in Transonic and Hyper-
sonic Flows; AIAA-93-3359 (1993).

[17] R. Lohner, K. Morgan, J. Peraire and M. Vah-
dati - Finite Element Flux-Corrected Transport

(FEM-FCT) for the Euler and Navier-Stokes
Equations: Int. J. Num. Meth. Fluids 7. 1093-
1109 (1987).

(18] R. Léhner and J. Ambrosiano- A Vectorized Par-
ticle Tracer for Unstructured Grids; J. Comp.
Phys. 91, 1, 22-31 (1990).

(19] R. Loéhner and J.D. Baum - Adaptive -
Refinement on 3-D Unstructured Grids for Traun-
sient Problems: Int. J. Num. Meth. Fluids 14,
1407-1419 (1992).

R. Lohner and P. Parikh - Three-Dimensional
Grid Generation by the Advancing Tront
Method: Int. J. Num. Meth. Fluids 8, 1135-1149
(1988).

[21] S. Sivier, E. Loth. J.D. Baum and R. Léhner
- Unstructured Adaptive Remeshing Finite El-
ement Method for Dusty Shock Flows: Shock
Waves 4. [5-23 (1994).

(22] R. Lohner - Some Useful Renumbering Strategies
for Unstructured Grids: Int. .J. Num. Meth. Eng.

36. 3259-3270 (1993).

R. Lohner, R. Ramamurti and D. Martin - A
Parallelizable Load Balancing Algorithm: AIAA-
93-0061 (1993).

(24] J.D. Baum. II. Luo and R. Lohner - Numerical
Simulation of a Blast Iuside a Boeing 747: AIAA-
-93-3091 (1993).

(25] H. Luo, J.D. Baum, R. Lohner and J. Ca-
bello - Adaptive Edge-Based Finite Element
Schemes for the Euler and Navier-Stokes Equa-
tions: ATAA-93-0336 (1993).

[26] 3.D. Baum, H. Luo and R. Léhner - A New
ALE Adaptive Unstructured Methodology for
the Stimulation of Moving Bodies; AIAA-94-0:114
(1994).

II. Luo. J.D. Baum and R. Léhner - Edge-Based
Finite Element Scheme for the Euler Equations:
ATAA J. 32.6, 1183-1190 (1994).

23]

12

ATAA-95-2259

(28] J.D. Baum, II. Luo and R. Lohner - Numerical
Simulation of Blast in the World Trade Center:
AIAA-95-0085 (1995).

R.G. Whirley and J.O. Hallquist - DYNA3D. A
Nonlinear Explicit, Three-Dimensional Finite El-
ement Code for Solid and Structural Mechanics -
User Manual; UCRL-MA-107254. Rev.1, (1993).

[29]

(30] T. Belytschiko and Tsay - Explicit Algorithm
for Nonlinear Dynainics of Shells; Comp. dMeth.
Appl. Mech. Eng. 43, 251-276 (1984).

[31] T.J.R. Hughes and W.K. Liu - Nonlinear Finite
Element Analysis of Shells: Part 1. Thiree Dimen-
sional Shells; Comp. Meth. Appl. Mech. Eng. 26,
331-362 (1981).

(32] T. Belytschko and I. Leviathan - Physical Stabi-
lization of the 4-Node Shell Element with One
Point Quadrature: Comp. Meth. Appl. Mech.
Eng. 113. 321-350. (1994).

(33] D.P. Flanagan and T. Belytschko - A Uniform
Strain Ilexahedron and Quadrilateral with Or-
thogonal Hourglass Control; Int. J. Num. Meth.

Eng. 17. 679-706, (1981).

[34] i.L. Goudreau and J.O. Hallquist - Recent De-
velopments in Large-Scale Finite Element La-
grangean Hydrocode Technology; Comp. Meth.
Appl. Mech. Eng. 33, 725-757 (1982).

[35] C.M. Charman, R.M. Grenier, and R.R. Nickell -
Large Deformation Inelastic Analysis of [mpact
for Shipping Casks; Comp. Meth. Appl. Mech.
Eng. 33. 759-784, (1982).

R. Lohner - Robust., Vectorized Search Algo-
rithms for Interpolation on Unstructured Grids:
J. Comp. Phys. 118, 380-387 (1995).

D.N. Knuth - The Art of Computer Program-
ming , Vol. 3; Addison-Wesley (1973).

[38] R. Sedgewick - Algorithms ; Addison-Wesley
(1983).

csD
A
DNS T
RANS T
A
Euler -+
- Advanced
3 aeroelasticity
=7 Full
5 potential T~
[
5
£} Acoustics -+
Classic
v aesroelasticity
Potential -+
No fiuid
-+ } - — = CFD
Rigid Rigid body Modat Linear Non-finear
walls (6d.ot) analysis FEM FEM
—— } -

linear eiastic materials (non-finear elasto—plastic materials

Figure 1: Levels of Physical Complexity for C'FD and CSD

Fluid

Solid

Same discretizations
(structured-structured) Different discretizations

(structured~unstructured)

Fluid

Same discretizations
(structured-unstructured) Ditferent discretizations

(unstructured—unstructured)

2o
.....
o

Solid

Ditferent discretizations
plus virtual grid
(structured-unstructured)

Same discretizations
{special unstructured elements)

Figure 2: Surface Discretizations for ('I'D and ('SD

—

CFD

Ia

Interpolation

INTERFACE

Projection

Figure 3: Loose Coupling Algorithm

Figure 4: Surface to Surface Grid Interpolation

a) Concave Ridges

fo

b) Convex Ridges

Figure 5: Problems When Searching for Host [Faces

x

Figure §: Most Visible Neighbour Face

No Host Face

Multiple Host Faces

avs
[/ /

Figure 7: Unwrapping Doubly Defined Faces

Surface Face With Normals

Surtace Edge

Figure 3: Quadratic Surface Reconstruction With Edge-Wise Hermite Polynomials

.ov=0,

quadrature
points

I

} - o fluid

1

points
with p=0

il ..

Figure 9: Quadrature Points Introduced on Fluid Faces

p=0.00396
u=56908.

w=0.
e=0.587e¢+10

p=0.00125
u=0.

v=0.

w=0.
e=0.2067e+10

10

d 1=0.01
8570.05

Figure 10: Shock-Cylinder Interaction

a) Problem Definition

SHOCK-CYLINDER INTERACTION (T=0.39E-03)

AVAV,

NN

—

Dyna3d Surface Mesh FEFLOQ96 Surface Mesh

SHOCK-CYLINDER INTERACTION (T=0.39E-03)

Dyna3d Abs. Velocity FEFLOS6 Pressure

b) Thick Shell: T=0.39e-3

|

SHOCK-CYLINDER INTERACTION (T=0.79E-03)

AVAVA
 IAVAYA

Dyna3d Surface Mesh

FEFL.O96 Surface Mesh

SHOCK-CYLINDER INTERACTION (T=0.72E-03)

$

/4

Ry

==

1 b
R 2

e

Dyna3d Abs. Velocity

c) Thick Shell: T=0.79¢-3

FEFLO96 Pressure

SHOCK-CYLINDER INTERACTION (T=1.41E-03)

7\ VAN

AVAVAVA WAYAY

Dyna3d Surface Mesh FEFLO96 Surface Mesh

SHOCK-CYLINDER INTERACTION (T=1.41E-03)

Dyna3d Abs. Velocity FEFLO96 Pressure

d) Thick Shell: T=1.41e-3

SHOCK-CYLINDER INTERACTION (T=0.24E-03)

Y TATava~ S \/ \/
AT
N\
X U W
SRR
LK
LNPKER
KPR
LK
AT
SRPKEK
Kl
N KEREK
KRS KRR q
PR KKK
K] K DK
T K
N e
RRRKRT ORISR
BRIV NS
I
RKRNRNSISKSREN
NN N U o K
NSRRI,
RTINS ISORE A
ROV
OB VNSRRI
:v‘,‘;lm ‘,“",:Eav :
AU AIIITS
SKHAGAASEIRIS
B A SIS
g 577 AVARIAS N
- g4
”,
Dyna3d Surface Mesh FEFLO96 Surface Mesh

SHOCK-CYLINDER INTERACTION (T=0.24E-03)

7
i
5

Dyna3d Abs. Velocity

e) Thin Shell: T=0.24e-3

FEFLO96 Pressure

worp Lo 1NG-yoolg JT aiusi]

AINSSOI | pPue spriry oovjang g-of =1, (e

g-aLL'1=] ‘sdals 001

000'00S=IN3 13N 068’ L=AVNON
000'88=NIOdN €G6'1=NIOdN

S

SaInssald pue —._wQZ wo&_._s.w, 9601434 UsaN @oelInG AEVNAd

d3113dHS V HLIM NOILOVHILNI XOOHS

SHOCK INTERACTION WITH A SHELTER

FEFLO96 Surface Mesh and Pressures

DYNA3D Surface Mesh

107,000

NPOIN

=1,953

NPOIN

NELEM=610,000

NQUAD=1,890

200 Steps, T=3.17e-3

rids and Pressure

1
T

}: Surlace (

3170,

b) T

QIUSSAL | PUR SPUITY adRang (-alg p=], (9

€-9/9F=1 'sdalS 00€

000'822=N313N 068’ L=AVNON
000°£21=NIOdN €56'1=NIOdN

sainssald pue cwm_.z, owmt,:w wm,o._u_um YSa 9deling QEVYNAQ

H317dHS V HLIM NOILOVHILNI XOOHS

< LR LS NSO AT

: R o BT
2 a3 6
R S SER LA ST T
Byetnininen

S

AT
L :g:?",x el st et Takhse)
‘_','5' 204 L

91

SR 777477 -
000 200 00 0 V000 1 A 0

L
! i
‘+ [_M;Y;L;fff,}'fff

i |
— R A A e

/
A,
/Ay

WSy
g
QR A A7 A 7
VAV i i Wieny % nﬁ# m‘n’

o,

%
R

—

s'
[
o

M
oMY
m“\"’ﬁ;ﬁ'
s I e,
===

Pt gy 3 o)
R R Tl
',-,;\;»ma-!-’iﬁ;ﬁ-.m*“ﬁ
L ST A AT T

e T et
e SRy y

m‘uvﬂw.v Faras ARy
L S i AL 3 3 A
e e e iy A ey
e e e D e P R e e Lo
A e SRS
e

2 s

BRI TR

AU SN 1N
suitcl

e veend

SRt S W

i
i
i

H
I
{
wd

[T

[T Y STV

VAL DS

SUTO0ANOD RASSHUA Aoy

devNAd 9601434

VO /NWD /JIVS

R R T N N TE I N Y T -

. O S b DN F Y IR
NI A | LY A : B A |

G et B e s e

I\
WY

i
H
f
i
i
i
i
t
i

S ——

DO IVHAIDANES S | DEASSHAd L)

deVNAQ | 9607434

NOILVHDIINI QSO - ad40

OVERPRESSURE, Nondimenslonal

OVERPRESSURE, Nondimensional

2 -
2 -o
o =
2 -

RN -3
N g
o 2
N 5
o o
oH =
a o

: - . . - .
00 20 40 60 80 100 120 140 16.0 18.0 20.0
TIME. Nondimensional :

o
: o

-
4 o
2

~
= o
I

-
g o
o~

(2]
84 o
2

-
-E Fo

“«
g s

b
2 e

-
& <
O-uJ ot

-
e o
[

00 20 40 60 80 100 RO KO 160 180 20.0
TIME, Nondimensionai

IMPULSE, Nondimomlo'nal

1}
09

60 70 80
1 L n

50
i

40

20
IMPUIL SE, Nondlmonlio.nal

OVERPRESSURE, Nondimensional
10 30

0
I
1

~10

00 20 40 60 80 100 120 140 160 180 20.0‘
TIME. Nondimensional

| 'S

e =}

-

< o
3 9 2
g = e ¢
8 §°1 o 2
o =
5 S= - $
€ gn ‘G-g
= 3
g Z 5 v &
2 wi [° 2

ac

ui @ rou
7] o v}
3 o =1
a a2 ! Fe &
E3 & -2

Bn o

o ad

- s

+

¥ - :
0.0 20 40 6.0 8.0 100 120 140 160 18.0 200
TIME. Nondimensionai

f) Comparison to Experimental Data: Pressure Tiime Histories. Room 1, Walls; Experimental Data: Thin

Lines. Numerical Predictions: Thick Lines

3
Q
Legend
expenm
---=~- ga-code
§ g | TN
[y] :
= .
o :
I3 :
] :
& :
g AR
3 §_ \ o oy . }\ \
a H) ~ . 7
° 2l Y I VRN
T ; W
v
g : ? |
q 1 1 v “
] 2 4 6 8 10

Time (msec}
g) Comparison to Experimental Data: Displacement Time History, Wall Between Rooms 1.2.

CAD Definition

CAD Definition

. X RO
\\WA{&'.\:I! /...nu..r/ %/’ “.
<|\,/,<ch\\ 0

Figure 13: Shock-Truck Interaction

a) Problem Definition

,.-_
|
v

b) Surface Grids

‘;_.'aé‘é‘._fé
‘&@%7
‘:;-é'.-m‘b& eﬁ‘ e % b
“.&" oS /] i,
NS apaasse)i
X SRS e
VLIl otiiiil
NN SOl
SR ‘;‘ O
SR \ K
SRS\
"§'§ N \] NoAA
LN It
2500 A
Sk e

L
S
KA

i
" 4
5

VL z
37
B

CSD Surface Mesh (t=0)

wﬁix?}é};g}f!.i ponas T

wo

RPEIESS

PR

<3

Folay
LS
e

X
O
-
o
-
<
Z
®
—
O
<
Q.
=
4
O
e,
L
7p)

A COUPLED CFD/CSD SIMULATION

SHOCK IMPACT ON A TRUCK
A COUPLED CFD/CSD SIMULATION

o v Aer—

%

B T EN
TR

MRS T
TR T

e ke

| mE SN N BN EN BN SN BN NN BN BN WN B BN B SN O an

AFOSR Final Report 17

APPENDIX 6: SURFACE MESHING FROM DISCRETE DATA

17

i

JOURNAL OF COMPUTATIONAL PHYSICS 126, [-10 (1996)
ARTICLE No. 0115

Regridding Surface Triangulations

RAINALD LOHNER

GMU/CSI, The George Mason University, Fairfax, Virginia 22030-4444

Received August 11. 1995; revised December 26, 1995

An advancing front surface gridding technique that operates on
discretely defined surfaces (i.e. triangulations) is presented. Differ-
ent aspects that are required to make the procedure reliable for
complex geometries are discussed. Notable among these are (a)
the recovery of surface features and discrete surface patches from
the discrete data, (b) filtering based on point and side-normals to
remove undesirable data close to cusps and corners, (c) the proper
choice of host faces for ridges, and (d) fast interpolation procedures
suitable for complex geometries. Post-generation surface recovery
or repositioning techniques are discussed. Several examples rang-
ing from academic to industrial demonstrate the utility of the pro-
posed procedure for ab initio surface meshing from discrete data,
such as those encountered when the surface description is already
given as discrete, the improvement of existing surface triangula-
tions, as well as remeshing applications during runs exhibiting sig-
nificant change of domain. © 1996 Academic Press, Inc.

1. INTRODUCTION

The first and by far the most tedious step of any mesh
generation procedure is the definition of the boundaries
of the domain to be gridded. This may be accomplished
in two ways: (a) analytically, i.e. via functions, or (b) using
a tesselation or triangulation. From a practical point of
view, it would seem that an analytic definition of the surface
is the method of choice, given that nowadays most engi-
neering data originates from some CAD-CAM package.
However, in many instances, the boundaries of the domains
to be gridded are not defined in terms of analytical func-
tions, such as splines, B-splines, Coon’s patches, or NURBS
surfaces, but in terms of a triangulation, i.e., discrete faces
and points. Several classes of applications where this is the
case include:

— Visualization and manipulation of complex analytical
functions, such as implicit analytic surfaces obtained via
superposition or convolution [1, 2];

—Numerical simulations with geometric input data from
measurements, such as

—~Climate modeling, where the surface of the earth
is available from remote sensing data;

—Groundwater and seepage modelling, where the
geological layers have been obtained from drill data or
seismic analysis; and

—Medical problems, where the patient data has been
obtained from CAT scans; :

—Numerical simulations that require remeshing, either

—Within the same field solver (e.g., forging simula-
tions, where remeshing is required to regularize the grid,
or simulations with adaptive remeshing); or

—For use with a different field solver (e.g., fluid-
structure interaction problems, where the surface of the
fluid domain is given by the structural surface grid [3], or
hypersonic reentry problems, where ray-tracing based on
the CFD mesh is used for heat transfer calculations).

Given this discrete data, one may either approximate it
via analytical functions, or work directly with it. We prefer
the second choice, as the proper approximation via analyti-
cal functions becomes cumbersome and problematic for
complex geometries. A further reason for using directly
discrete data is the fact that surface intersection and trim-
ming are much easier on discrete data than on analytic
surfaces. This allows the concurrent generation of surfaces
by different users, that are then merged quickly to obtain
the final configuration [4].

The present paper describes a surface meshing proce-
dure for discrete data that employs the advancing front
technique [5-12]. The technique is based on three steps:
surface feature recovery, actual gridding, and surface re-
covery. The outline of the paper is as follows: having given
the rationale for surface meshing ab initio from discrete
data, Section 2 treats the problem of surface feature recov-
ery. This step allows the surface gridding to obey sides,
cusps, or other “ridge” features that may be present in
the discrete data, and results in discrete surface patches.
Section 3 describes the surface gridding of these discrete
surface patches via the advancing front technique. Section
4 considers ways of making the procedure robust in the
presence of sharp corners or convoluted patches. Section
5 considers the surface to surface interpolation problem,
which is of fundamental importance for large surface grids,
and Section 6 the postgeneration surface recovery. In Sec-
tion 7 several examples that demonstrate the versatility
and utility of the procedure are given. Finally, some conclu-
sions are drawn and an outlook for future work is presented
in Section 8.

0021-9991/96 $18.00
Copyright © 1996 by Academic Press. Inc.
All rights of reproduction in any form reserved.

2 RAINALD LOHNER

FIG. 1. Discrete surface patch recovery.

2. SURFACE FEATURE RECOVERY

A basic requirement for any surface gridder is that it
obey sides, cusps, or other “ridge” features that may be
present in the actual surface. In order to avoid gridding
over these “ridge” features, sides are first generated along
them, and then the surface is gridded with this initial front
of sides. A simple way to determine ridges is by comparing
the unit surface normals of adjacent faces. If the scalar
product of them lies below a certain tolerance, a ridge is
defined. Corners are defined as points that are attached to:

—Only one ridge;
—DMore than two ridges; or

—Two ridges with considerable deviation of unit side-
vector.

Between corners, the ridges form discrete lines. These
discrete lines either separate or are embedded completely
(i-e., used twice) in discrete surface patches. The formation
of discrete surface patches is performed with an advancing
front algorithm. An arbitrary surface face is selected as a
starting face and assigned a patch number. All neighbours
that are not separated by a ridge are kept in a local list. The
faces of this local list are interrogated for free neighbours in
turn and are assigned the current patch number. This local
list of neighbour faces becomes empty once all the contigu-
ous faces not separated by a ridge have been marked. This
procedure is repeated for all unmarked faces, yielding a
list of patches. Using the information of which sides belong
to a face, the discrete lines can be assigned to the patches
in turn. Figure 1 sketches the recovery of surface features
and the definition of discrete surface patches for a simple
configuration.

3. ADVANCING FRONT TECHNIQUE

The advancing front technique has gained widespread ac-
ceptance for grid generation due to its versatility and speed
[5-12]. The basic technique consists in marching into the
as yet ungridded region by adding one face at a time.
The border separating the gridded region from the as vet
ungridded one is called the front. The algorithm may be
summarized as follows:

F1. Define the surfaces to be gridded. In the present
case, this is done via triangulations. At the same time,
define the boundaries of the surfaces.

F2. Define the spatial variation of element size, stretch-
ings, and stretching directions for the elements to be
created.

F3. Using the information given for the distribution
of element size and shape in space, as well as the line-
definitions: generate sides along the lines that connect sur-
face patches. These sides form an initial front for the trian-
gulation of the surface patches.

F4. Select the next side to be deleted from the front;
in order to avoid large faces crossing over regions of small
faces, the side forming the smallest new face is selected as
the next side to be deleted from the front,

F5. Determine the discrete surface face IFADS that
contains or is close to the midpoint of the side to be deleted.

F6. Obtain the unit surface normal ng, for IFADS.

F7. With the information of the desired element size
and shape, and ng: Select a “best point™ position for the
introduction of a new point IPNEW (see Fig. 2).

F8. Determine whether a point exists in the already
generated grid that should be used in lieu of the new point.

If there is such a point, set this point to IPNEW and
continue searching.

s

Active Front

Discrete
Surface

Ideal Point Position

\New Surface Mesh

FIG. 2. Generation of surface triangulation on discrete surface.

REGRIDDING SURFACE TRIANGULATIONS 3

Cusp

Corner

FIG. 3. Discrete surface patch with cusps and corners.

F9. Determine whether the face formed with the se-
lected point IPNEW does not cross any given sides. If it
does. select a new point as IPNEW and try again.

F10. Add the new face, point, and sides to their respec-
tive lists.

F11. If a new point was added: reposition it on the
discretely defined surface.

F12. Find the desired element size and stretching for
the new sides.

F13.
F14.

Delete the known sides from the list of sides.

If there are any sides left in the front, go to F4.

As compared to the surface gridding of analytically de-
fined surfaces, which has been treated by a number of
authors [7-9, 11, 12], the only differences are:

—The search for the discrete surface face containing or
close to a point (Steps F5, F11);

—The introduction of a normal vector ng for each face
in order to determine the ideal point position (Step F7);

—The repositioning of new points on the discretely de-
fined surface (F11).

4. ENHANCEMENTS FOR ROBUSTNESS

The procedure, as described above, will work well for
smooth surfaces. In practice, however, one is often faced
with discrete surfaces that exhibit cusps, sharp corners, or
ridges with high curvature (see Fig. 3). In these instances,
the procedure must be enhanced in order to work reliably.
The most important of these enhancements: 2D crossing
check, point and side normals, angle of visibility for filter-
ing inappropriate data and proper host face for ridges, are
described in the sequel.

4.1. 2D crossing check. 1In regions of colliding fronts
on 3D surfaces with curvature, the face/side-crossing check

New Face

FIG. 4. Non-uniqueness of front crossing for curved surfaces.

is not uniquely defined (see Fig. 4). This ambiguity is best
circumvented by transforming all the points required, i.e.,
those in the list of close points and those attached to close
sides, to the plane defined by the midpoint of the side to
be deleted and the normal vector ng,. Thereafter, the face/
side-crossing check is performed in 2D.

4.2. Point and side normals. It is advisable to use the
point and side normals obtained by interrogating the host
face of the discrete data in order to filter out undesired
data from the list of close points and sides. In this way,
the front data of the lower portion of the cusp shown in
Figure 3 is automatically removed when generating a face
on the upper portion and vice versa.

4.3. Angle of visibility. In order to avoid the improper
choice of close wrong points that may have the correct
point and side normals, but belong to another portion of
the discrete surface patch (see Fig. 5), all points outside
the allowable “angle of visibility”” « are no longer consid-
ered. A meaningful value for « can be obtained by measur-
ing the local surface curvature of the underlying discrete
surface in the vicinity of the side to be removed from the
front. In the present case, this is done by simply comparing
the normals of the host face and its neighbours.

4.4. Proper host face for ridges. For the sides along
ridges, there can be instances where the host face is not
properly defined. As an example, consider the situation

FIG. 5. Filtering with angle of visibility.

4 RAINALD LOHNER

6

FIG. 6. Selection of proper host faces at ridges.

shown in Fig. 6. Given the orientation of the side 1-2, the
proper host face is 3-4-5. However, face 3-6-4 could also
be considered as a host face. In order to resolve this ambi-
guity, the point xg that is furthest from the side is deter-
mined for each possible host face. The proper host face
has to satisfy

¢ = [(xa = x1) X (Xpas — X1)] - Mgas > 0.

(M
5. SURFACE TO SURFACE INTERPOLATION

One of the main differences between gridding discrete,
as opposed to analytic, surfaces is the potentially very
expensive search for the host face of each new point and
side generated. Careless implementation of these opera-
tions would lead to an O(N, - N,,) complexity, where N,
denotes the number of new surface points created and N,
the number of points defining the discrete surface patch.
If both of these are of similar magnitude, the result is a
complexity of O(N}), clearly inappropriate for large sur-
face grids. Given that the advancing front algorithm by its
very nature adds points and sides in the vicinity of known
data points, the host face of the side to be taken out can
be used as a good starting guess from which to find the
correct host face via a neighbour-to-neighbour search (see

Start Face

New Point

End Face = Host Face

FIG. 7. Neighbour-to-neighbour jump search procedure.

¥p=¥0+°‘i91

dpy =1 a3 ggl

FIG. 8. Surface interpolation.

Fig. 7). With the notation of Fig. 8, the point to be interpo-
lated x,, is given by

2

3
X, =X+ 2 o'g,
i=1
where

_8 X g
lg: X g

gi = X; — Xp, l = 1, 2, g3 3 (33)7 (3b)

and the shape-functions or barycentric coordinates N* are
given by

N=d, i=1,2; N'=a=1-0a'—d?

(3¢). (3d)
the point x,, is considered as being on the surface face Iff:
min(N,1 -N) =0, Vi=0,1,2, (4a)

and

dn - |a3g3 = 511‘ (4b)
Here &, denotes a tolerance for the relative distance normal
to the surface face. Many search and interpolation algo-
rithms have been devised over the years. We have found
that for generality, a layered approach of different interpo-
lation techniques works best. Wherever possible, a vec-
torized advancing front neighbour-to-neighbour algorithm
is employed as the basic procedure [13]. Given that the
advancing front algorithm by its very nature adds points
and sides in the vicinity of known data points, the host
face of the side to be taken out can be used as a good
starting guess from which to find the correct host face via
this neighbour-to-neighbour search (see Fig. 7). Should
this fail, octrees [14, 15] are employed. Finally, if this ap-

REGRIDDING SURFACE TRIANGULATIONS 5

a) Concave Ridges No Host Face

Multiple Host Faces

(b) Convex Ridges

FIG. 9. Problems when searching for host faces.

proach fails too, a brute force search over all the surface
faces is performed [13]. For realistic 3D surface geometries,
the interpolation of surface grid information may be com-
piicated by a number of the factors. The first of these
factors is the proper choice of 9,, i.e., the proper answer
to the question: “How close must a face be to a point in
order to be acceptable ?°’ This is not a trivial question for
situations where narrow gaps exist in the discrete surface
mesh, when there is a large discrepancy of face-sizes be-
tween the discrete surface grids and the new surface grid,
as well as when the discrete surface grid exhibits highly
stretched elements. Our experience indicates that the
choice

8, <cplg X gl”, ¢, =0.05, (5)

works reliably, although the constant ¢, may be problem
dependent. A second complication often encountered
arises due to the fact that Eq. (4a) may never be satisfied
(e.g., the convex ridge shown in Fig. 9a), or it may be
satisfied by more than one surface face (e.g., the concave
ridge shown in Fig. 9b). In the first instance the criterion
given by Eq. (4a) may be relaxed somewhat to

min(N,1 - N)=¢, Vi=0,1,2, (6)

where ¢ is a small number. For the second case, the discrete
surface face with the smallest normal distance d,, is se-
lected. We remark that in both of these instances the final
point location is unaffected by the final host surface face,
as the interpolation weights are such that only the points
belonging to the ridge are used for interpolation. We have
found that it is very important to take the face that has

il

the smallest distance to the point being interpolated in
order to mitigate any possible problems. For situations
close to corners. gaps, or multi-surface configurations, an
exhaustive search over all faces will be triggered. In order
not to check in depth the complete surface mesh, only the
faces that satisfy the relaxed closeness criteria ¢ = —1, ¢,
= 0.5 are considered. The face with the closest distance
to the point is kept. If a face satisfies Eq. (4a), the closest
distance is indeed d,,. Should this not be the case. the
closest distance to the three sides ij of the face is taken:

o= min[jlx,, - (1-8p)x;, — Bixil,
— (xp ~X)" (xf ~X)
(x—x) (%= x;)

(7a), (7b)

Bij

Should two faces have the same normal distance, the one
with the largest minimum shape-function o/, i = 0, 1, 2
is retained.

A third complication arises for cases where cusps or
close surfaces are present. For these cases, the “best” face
may actually lie on the opposite side of the face being
interpolated. This ambiguity is avoided by defining a sur-
face normal, and then only considering the faces and points
whose normals are aligned, i.e., those for which

Rgys - N, >C, C= 0.5. (8)
Here ng, n, denote the discrete surface face and the point/
side-normals respectively. Experience indicates that it is
advisable to perform a local exhaustive search for all faces
surrounding the best host face found in order to obtain
the host face that satisfies Egs. (4), (7) as best possible.

Although these extra steps for interpolation seem com-
plex, they are not only indispensable for discrete data that
exhibits cusps, high surface curvature, and internal ridges.
but their cost is not significant.

6. POSTGENERATION SURFACE RECOVERY

After the surface grid has been generated, it may be
desirable to reposition the points in order to meet certain
surface fidelity criteria. Obvious choices, shown in Fig.
10, are:

(a) Keep as is. Le., no postprocessing. This will be the
preferred choice if the loss of surface fidelity due to curva-
ture and/or different face-sizes is small.

(b) Move to closest discrete point. The rationale for
this option is that if the underlying discrete data is of much
finer resolution than the newly generated mesh, moving
each point to a given point will not distort the mesh signifi-
cantly while assuring an exact pointwise representation.

(c) Higher order recovery. In this case, the new sur-

6 RAINALD LOHNER

a) Generated Mesh b) Keep As Is

c) Move to Closest Point d) Higher Order Recovery

—— Discrete Data Triangulation
New Surface Mesh

FIG. 10. Postgeneration surface recovery.

face points are repositioned using higher order recovery
procedures for the discrete data. This option is attractive
if the discrete surface data is much coarser than the newly
generated mesh and exhibits surface curvature. The first
step consists in computing average normals at the points
of the discrete surface. In a second step, the information
of which host face a point belongs to, and which are its
local area coordinates ¢, &, {3, together with the point
normals, is used to reposition the point. We have consid-
ered to date:

(c1) Quadratic recovery. For each side of the dis-
crete surface triangulation, a mid-point location is esti-
mated from a Hermitian polynomial as

x=(1- &1 +28x + &1 -

)
+ 8B -28% - (1~ Hry,
where
r=sl::—§——gz—§%;l, s=x,— X, s=]s 10)

and ¢ = 0.5. With this information, and using the notation
in Fig. 11, the recovered point location is given by the
standard quadratic triangle shape functions [16]:

x=0240 - Dx + 5286 — Dxo + 524 — Dxs (1)
+480xs + 450xs + 4040%s.
(c2) Cubic recovery. For each face of the discrete

surface triangulation, we have nine pieces of information:
location of the end-points, and inclination of the normals

with respect to the plane formed by the plane. For a com-
plete cubic, 10 pieces of information are required. We use
the Zienkiewicz triangle, derived for plate elements [16].
to account for this deficit.

The recovery procedures described represent just two
instances of many possible alternatives, such as mid-nor-
mals, local spline, Clugh—-Tocher, Doo-Sabin, etc. [17, 18].

7. EXAMPLES

The described procedure was applied to a number of
cases in order to test its applicability in production environ-
ments. For all of these cases, the surface was recovered
using quadratic and cubic functions. However, no graphi-
cally discernable difference was encountered.

6.1. Sphere. We start with this academic example to
show the basic possibilities of surface gridding based on
discrete data representations. An initial surface mesh.
shown in Fig. 12a, is taken as the starting point. This mesh
contains no faces whose normals vary by more that 8 =
10° among neighbours. For this reason, the whole surface
is treated as one patch, with the largest side taken as a
discrete line. Two new surface grids, one of constant ele-
ment size and one with a prescribed source at one end of
the sphere, were generated and are shown in Fig. 12b, c.

6.2. Forging piece. This second problem demon-
strates the use of surface remeshing for discretely defined
domains within the same numerical simulation. A piece
that originally started out as pie-shaped has been distorted
significantly due to forging. A complete remeshing of the
computational domain is required. The surface of the mesh
at this stage is shown in Fig. 13a. The edge-detection algo-

3

nq

Surface Face With Normals

Surface Edge

FIG. 11. Quadratic surface reconstruction.

REGRIDDING SURFACE TRIANGULATIONS

a) Original Srfac

YAV AR

or

DEAIALS O

SRS
K}

o
QA

V2 e S BT w AVAN
RS SR
e SO
o
LSOOI

T ATAVAVAVAN YA,
T AYAVAVAAY,
T AAYA v VAVAVAYAN
OO RN
SRR AN

A

Ry
AN,
ANy,
AVLY,
AVav,

)
Ay,

A
Y4
54

A,
S
A,
v\
\Vy
S
N
K]
7

oS
)
R

7%

AV

{5
X
2}

Ay,
A3 X

</

Vs

IR
S
RRJ
4
NZ
Z
Z

70

i

5
ey
YA

VAV AYE:

AR

S,
VAN

Ve

0

il

%
5

o,

Ve
X

vy
%
Avay

FIG. 12.

rithm then forms the discrete line and surface patch
definition shown in Fig. 13b. The angle used to determine
ridges was set to 8 = 25°. An adaptive background grid
is generated automatically [10], starting from a cube.
With this background mesh, a new surface triangulation,
shown in Fig. 13c, is generated.

6.3. Ship. This case illustrates the use of surface
meshing from discrete data as a means to expedite the
domain definition process, as well as the possibility of
correcting an initially improper surface discretization. An
initial surface mesh for the ship, shown in Fig. 14a, was
provided as a starting point. The discrete lines and
surface patches obtained using an angle tolerance of 8
= 30° between adjacent faces are shown in Fig. 14b. A
finer meshing region close to the water line was specified
by using two surface sources [10]. The final surface mesh,
given in Fig. 14c, not only exhibits a better discretization
(i.e., less small angles), but it is also better suited for
the numerical simulation.

6.4. Car fender die. This case shows the use of
surface meshing from discrete data as a means of stream-
lining data input within industrial simulations. The origi-
nal CAD dataset had over 500 surface patches, many
of them overlapping and in need of trimming. Instead,
a cloud of points, obtained from a digitization of the
actual part, is taken as the starting point. This cloud of

b) Remeshed Surface With Uniform Size

AVAVAVATN Y
VAV VAYS

Sphere.

approximately 5,000 points, shown in Fig. 15a, is then
triangulated using an automatic surface recovery tool
developed by the author [19] (for automatic surface
recovery, see also [18, 20]). The surface is now defined
discretely, and lines and patches, shown in Fig. 15¢c, are
recovered. The final surface mesh, suitable for stamping
calculations, is shown in Fig. 15d. This example clearly
demonstates the possible advantages of discrete surface
gridding. Trimming and combining over 500 surfaces is a
tedious and time-consuming effort, which can be reduced
drastically as shown here.

6.5. Generic hypersonic airplane geometry. This final
case shows the combination of discrete and analytically
defined surfaces to obtain rapid turnaround in preliminary
design calculations. The airplane fuselage is given from
a structural dynamics calculation and shown in Fig. 16a.
The recovered discrete surface patches, together with
the added outer box and some further analytical patches
for nozzle entry and exit planes, is shown in Fig. 16b.
The new surface discretization, suitable for preliminary
aerodynamic design calculations, is shown in Fig. 16c.

All of the surface grids shown were obtained in less
than 5 min on an IBM RISC-550 workstation, indicating
that it is feasible to port these automatic surface meshing
and remeshing techniques into production codes.

RAINALD LOHNER

Surface Mesh With Background Grid Adaptation

FIG. 13. Forging piece.

8. CONCLUSIONS AND OUTLOOK

An advancing front surface gridding technique that op-
erates on discretely defined surfaces has been presented.
Different aspects that are required to make the procedure
reliable for complex geometries are discussed. These in-
clude:

—Recovery of surface features and discrete surface
patches;

—Filtering based on point and side-normals to remove
undesirable data close to cusps and corners;

—Filtering based on an angle of visibility to remove
irrelevant close-point/side data;

—The proper choice of host faces for ridges; and

—Fast interpolation procedures suitable for complex ge-
ometries.

The task of postgeneration surface recovery or reposi-
tioning is also discussed, and some of the many possible
alternatives are given.

Several examples ranging from academic to industrial
demonstrate the utility of the developed procedure for ab
initio surface meshing from discrete data. such as those
encountered when the surface description is already given
as discrete, the improvement of existing surface triangula-
tions, as well as remeshing applications during runs exhib-
iting significant change of domain.

As with any other technique, improvements are always
possible. They will center on better postgeneration surface
recovery schemes and further enhancements in robustness
and reliability for complex geometries.

a) Original Surface Grid

S,

AN

~—

b) Discrete Lines and Surface Patches

c) New Surface Grid

FIG. 14. Ship hull.

REGRIDDING SURFACE TRIANGULATIONS 9

b) Recovered Triangulation

a) Cloud of Points

AN NATav 0oy
E!mmxék«ﬁ%’lmﬁ“ﬂ'

.
Sy N Y
i)

!

X
*‘gﬂ'ﬂh ﬁvuv ¥
A

\/
:ﬁmﬂ%"%&!ﬁl
KA
AY)NY,
SV, Ve
NS Y »:4
S

1]

i
I
ol
5
(>

N
%o

FIG. 15. Car fender die.

ACKNOWLEDGMENTS

A considerable portion of this work was carried out while the
author was visiting the Centro Internacional de Métodos Numericos
en Ingenieria (CIMNE) at the Universidad Politécnica de Catalunya.
Barcelona, Spain. The support for this visit is gratefully acknowledged.

REFERENCES

1. J. Bloomenthal., Comput. Aided Geom. Design, November (1988).

J. Bloomenthal and K. Ferguson. Proc. SIGGRAPH. August (1995).

R. Lohner, C. Yang, J. Cebral. J. D. Baum, H. Luo, D. Pelessone.

and C. Charman, AIAA-95-2259, (1995) (unpublished).

. S. H. Lo, Int. J. Numer. Methods Eng. 38, 943 (1995).

J. Peraire, M. Vahdati, K. Morgan, and O. C. Zienkiewicz. J.

Comput. Phys. 72, 449 (1987).

. R. Lohner, Commun. Appl. Numer. Methods 4, 123 (1988).

R. Lohner and P. Parikh, Int. J. Numer. Methods Fluids 8, 1135

(1988).

. J. Peiro. J. Peraire, and K. Morgan, Proceeding. POLYMODEL
XII Conf., Newcastle-upon-Tyne, May 23-24 (1989) (unpublished).
9. J. Peraire. K. Morgan, and J. Peiro, AGARD-CP-464. 18.

(1990) (unpublished).

10. R. Lohner, Commun. Appl. Numer. Methods, submitted.

11. K. Nakahashi and D. Sharov, AIAA-95-1686-CP, 1995 (unpub-

lished).

12. C.-J. Woan, ATAA-95-2202. 1995 (unpublished).

13. R. Lohner, J. Comput. Phys. 118, 380 (1995).

FIG. 16. Generic hypersonic airplane geometry. 14. D. N. Knuth. The Art of Computer Programming, Vol. 3 (Addison-

woN

[SA

~N o

oo

10 RAINALD LOHNER

Wesley, Reading, MA., 1973).
15. R. Sedgewick. Algorithms (Addison-Wesley. Reading. MA. 1983).

16. O. C. Zienkiewicz. The Finite Element Method, (McGraw-Hill.
New York. 1982).

17. G. Farin. Comput. Aided Geom. Design 3(2), 83 (1986).

18. J. Hoschek and D. Lasser, Fundamentals of Computer Aided
Geometric Design (Peters, 1993).

19. R. Lohner, Surface reconstruction from clouds of points. preprint.

20. H. Hoppe, T. DeRose, T. Duchamp, J. McDonald. and W. Stuetzle.
Comput. Graph. 26(2), 71 (1992).

AFOSR Final Report

APPENDIX 7: PROGRESS IN GRID GENERATION

18

18

Engineering with Computers (1996) 12: 186-210
¢, 1996 Springer-Verlag London Limited

Engineering
Computers

Progress in Grid Generation via the Advancing Front Technique

R. Lohner
The George Mason University, VA, USA

Abstract. We describe recent extensions and improvements
to the adrvancing front grid generation technique. These
improvements target a range of applicability, speed and user

Jriendliness. The range of applicability is enlarged by the

ability to produce volumetric grids around thin surfaces (such
as shells, membranes, fabrics or surfaces with cusps), the
generation of high aspect ratio grids for Navier—Stokes
applications, the generation of higher order triangular and
tetrahedral elements, and the generation of quadrilateral and
hexahedral elements. Speed improvements are the result of
reduced search overheads, as well as vectorization and
parallelization. User friendliness is enhanced by the ability to
grid directly discrete data and simpler ways of specifying the
desired element size and shape in space. Numerous examples
are included that demonstrate the versatility and maturity that
adrvancing front grid generators have achieved.

Keywords. Finite elements; Grid generation; Tetra-
hedra; Unstructured grids

1. Introduction

The general topic of unstructured grid generation
techniques has seen a major burst of activity in recent
years. While only a decade ago the automatic
generation of grids for complex geometries in excess
of a million elements was impossible. we nowadays
commonly deal with problems of this size [1-3].
When contemplating the generation of a grid, four
data items must be specified:

(a) A description of the bounding surfaces of the
domain to be discretized.

(b) A description of how the element size, shape and
orientation should be in space.

(c) The choice of element type.

(d) The choice of a suitable method to achieve the
generation of the desired mesh.

Correspondence and offprint requests to: R. Léhner. GMU, CSI, The
George Mason University, Fairfax VA 22030-4444, USA.

If we consider the fourth item on this list, i.e. the task
of filling a given domain with elements, there appear
to be only two basic ways of accomplishing it:

—by filling the ‘empty’, i.e. as yet ungridded region
with elements; or

—by modifying an existing grid that already covers
the domain to be gridded.

The first class of techniques denotes the advancing
front methods [4-10] the front being defined as the
boundary between the gridded and ungridded region.
The key algorithmic step that must be addressed for
advancing front methods is the proper introduction
of new elements to the ungridded region. For triangular
and tetrahedral grids the elements are introduced
sequentially one at a time. For quadrilateral and
hexahedral elements, this technique is known as
paving or plastering [11, 12]. The second class of
techniques is known as Voronoi or Delaunay triangu-
lation methods. Here, the key algorithmic step is the
proper introduction of new points to thc given grid.
This class of techniques has been used only for the
construction of triangular or tetrahedral grids. The
name Voronoi or Delaunay that is associated with
these techniques stems from the element reconnection
technique most often employed [13-19]. We remark
that the modified or finite octree [20, 21] techniques
represent just one possible realization of a Delaunay
triangulation. Given the known distribution of points
from the octree, the mesh connectivity is obtained by
applying the circumcircle or Delaunay criterion.

The present paper summarizes some recent exten-
sions and improvements of the advancing front
technique. In order to define terms and aid in the
understanding of some of the subsequent material, an
outline of the basic technique is described in Section 2.
Section 3 treats the following extensions in the range
of applicability: multimaterial problems, volumetric
gridding of thin or crossing surfaces, grids suitable for
Navier—Stokes applications, higher order triangles
and tetrahedra, and grids consisting only of quadri-
lateral or hexahedral elements. Speed improvements

Automatic. Parallel and Fault Tolerant Mesh Generation

combustion simulations, and can take advantage of
more accurate discretization schemes.

o Reduction of element count. Today, HEXAR
produces meshes that are 2—-10 times larger than
hand-made meshes.

e Improving implementation in analysis. Qur ob-
jective is to tune the product so that it can be fully
integrated into existing CAE environments. Each
specific application area such as structures, cooling,
casting or external aerodynamics has its own
requirements. HEXAR must be improved in such
a way that all these requirements can be satisfied
with concern for accuracy and with minimal need
for human interaction during mesh generation.

e Reduction of the computational time. Today,
HEXAR requires a relatively large amount of
resources. This is because HEXAR relies heavily on
ray tracing and pattern recognition techniques
which can be parallel, but computationally
demanding. Future work will involve the explora-
tion of faster methods in order to achieve a
hundred-fold reduction in mesh generation time.

6. Conclusion

HEXAR is a good quality, approximate, automatic
mesh generator that represents a novel approach to

185

volume mesh generation for CAE. It uses highly
parallel algorithms to produce unstructured all-
hexahedral meshes featuring local grid refinement and
coarsing. It is designed to minimize the length of CAE
by reducing the time required to generate meshes.
Today, HEXAR produces sometimes a large number
of elements, may produce meshes of marginal quality
for certain applications and is relatively demanding in
terms of computer resources. As it is further developed,
its fidelity to the input geometry will improve, its
element count will be reduced and its performance will
increase substantially.

References

1. Stephenson, M.B., Blacker, T.D. (1989) Using conjoint meshing
primitives to generate quadrilateral and hexahedral elements in
irregular regions, Computers in Engineering (Riley, D.R.,
Cokonis, T.J., Gabriele, G., Kinzel, G.L.. Tamma. K.K., Bennett.
D.W., Kinoglu, M.F., Busnaina, A.A. and Rasdorf, W. Editors),
American Society of Mechnical Engineers, Book No. G0502B

2. Taghavi, R.; Dupont, A. (1989) Multidimensional flow simulation
in an inlet port/combustion chamber assembly featuring a
moving valve, Proceedings of the ASME Energy-Sources
Technology Conference and Exhibit, Houston, TX

3. Cabello, J.; Lohner, R.; Jacquotte, O.P. (1991) A variational
method for the optimization of two- and three-dimensionas
unbstructured meshes, Abstract in the first US National Congress
on Computational Mechanics, Chicago, IL

Grid Generation via the Advancing Front Technique

due to reduced search overheads, global h-refinement,
vectorization and parallelization are the topic of
Section 4. Section 5 deals with improvements in
user-friendliness, in particular surface generation
from discrete data and more convenient ways of
specifying element size and shape for complex geom-
etries. Section 6 is devoted to examples. As most of
these examples combine several of the improvements
described, the decision was made to add the examples
section at the end, instead of showing them ‘on the
go’. Although this makes the main body of the paper
rather ‘dry’, it should facilitate the overall understand-
ing of the material.

2. The Advancing Front Technique

The advancing front technique [4-10, 22] consists in
marching into as yet ungridded space by adding one
element at a time. The region separating the gridded
portion of space from the as yet ungridded one is
called the front. The algorithm may be summarized
as follows:

Fl. Define the boundaries of the domain to be
gridded. Without going into further detail, we
will assume some general form of hierarchical
surface definition consisting of patches, the lines
that surround or delimit them, and points at the
intersections of lines.

F2. Define the spatial variation of element size,
stretchings and stretching directions for the
elements to be created.

F3. Using the information given for the distribution
of element size and shape in space and the
line-definitions: generate sides along the lines
that connect surface patches. These sides form
an initial front for the triangulation of the
surface patches.

F4. Using the information given for the distribution
of element size and shape in space, the sides
already generated, and the surface definition:
triangulate the surfaces. This yields the initial
front of faces.

F5. Find the generation parameters (element size,
element stretchings and stretching directions)
for these faces.

F6. Select the next face to be deleted from the front;
in order to avoid large elements crossing over
regions of small elements, the face forming the
smallest new element is selected as the next face
to be deleted from the list of faces.

F7. For the face to be deleted:

F7.1 Select a ‘best point’ position for the
introduction of a new point IPNEW.

187

F7.2 Determine whether a point exists in the
already generated grid that should be used
in lieu of the new point. If there is such a
point, set this point to IPNEW and
continue searching (go to F7.2).

F7.3 Determine whether the element formed
with the selected point IPNEW crosses
any given faces. If it does, select a new
point as IPNEW and try again (go to
F17.3).

F8. Add the new element, point and faces to their
respective lists.

F9. Find the generation parameters for the new faces
from the background grid and the sources.

F10. Delete the known faces from the list of faces.

F11. Add the new faces to the front.

F12. I there are any faces left in the front, go to F6.

A recent thesis by Frykestig [23] gives a good
comparison of the different possibilities explored to
date for selecting the ‘best point position’, when to
use a given point vs the introduction of a new point,
specialized data structures for storing and retrieving
mesh data, etc. The complexity of the advancing front
algorithm is of O(N log(N)), where N denotes the
number of elements. Over the years, optimal data
structures have been implemented to realize such a
favourable scaling {7-10, 24, 25]. The procedure has
been used extensively to grid large-scale complex
geometry domains [1-3, 26, 27] and within adaptive
remeshing procedures [6, 9, 28—-32]. Sustained speeds
in excess of 50 000 tetrahedra/min have been achieved
on the CRAY-YMP [10, 29].

3. Extending the Range of Applicability

Having outlined the basic advancing front technique,
the next logical step is to extend the method’s range
of applicability. This section treats multimaterial or
multidomain applications, volume meshing for thin or
crossing surfaces, the generation of grids suitable for
Reynolds-averaged Navier—Stokes simulations, higher
order elements, and the generation of grids consisting
solely of quadrilateral or hexahedral elements.

3.1. Multimaterial or Multidomain Problems

Most large-scale fluid dynamics problems assume a
connected region where the material properties
(pressures, temperatures, viscosities, etc.) vary accord-
ing to a single equation of state. The situation is very
different in structural mechanics, where multimaterial
applications are common. The extension of the

188

R. Lohner

Surface 1
Surface 2

Fig. 1. Crossing of faces for thin surfaces.

Environment 1

Environment 2

advancing front technique to these situations is
straightforward. In a first pass, all the surfaces defining
the inner and outer boundaries of the domains to be
gridded are triangulated. Thereafter, a loop is per-
formed over all the domains. For each domain, the
faces corresponding to it are assembled and oriented
in the proper direction. A tetrahedral mesh is then
generated for this domain. A domain identifier is
attached to the newly created elements. The next
domain is then processed in turn, until all domains
have been gridded.

3.2. Volume Meshing for Thin or Crossing Surfaces

In many applications, portions of the boundaries to
be gridded will come very close together or even cross.
Examples where this occurs are the external meshing
of thin-walled structures, such as shells (roofs, walls,
etc.), membranes or fabrics (parachutes, sails, parasols,
airbags, etc.), or CAD data that exhibit cusps (trailing
edges of airfoils and wings). For these cases, the initial
surface triangulation will in all probability exhibit
crossing faces and/or duplicate points. The application
of the usual advancing front technique to this class of
problems is not possible, as there is no mechanism to
distinguish between the points that may or may not

Fig. 2. Environment variable definition.

lead to a crossed front. Suppose that face A in Fig. 1
is to be eliminated from the front. Point P will be the
point chosen when eliminating this face to form a new
element, implying that the ‘outside’ of the domain to
be gridded now contains an element. The occurrence
of faces that are extremely close or crossing can very
quickly lead to a failure of the advancing front
technique, making it impossible to treat these problems
on a routine basis. One possible way to circumvent
this problem is to mark the faces of the initial front
with a so-called crossing environment variable LFACR
(1:NFACE). This variable can either be obtained by
checking the initial front for crossing faces, or by
marking the different surface patches that comprise a
thin structure, fabric, or are crossing, before the
surface grid is generated. In the latter case, the surface
faces inherit the crossing environment variable from
the surface patch they belong to. As an example, the
surfaces shown in Fig. 2 have been marked with such
variables. Notice that not every surface patch has its
own environment variable, but that all the surfaces
lying on one side of a potentially troublesome region
have been given the same environment variable. After
marking all the surface faces appropriately, the points
are marked according to the environment variable of
the faces surrounding them. The points that belong

Grid Generation via the Advancing Front Technique

to more than one environment, such as may occur
along the ridges that separate two such regions (see
Fig. 2), are marked as LPOCR(IPOIN)= —1. The
marked points and faces can be used in a variety of
ways to make sure that only the proper points and
faces are considered when introducing new elements
for a face marked as belonging to a particular
environment. The two most important are;

(a) No points belonging to any other positive environ-
ment are considered for the creation of a new
element with the face being deleted from the front.
This avoids most of the possible logic mistakes
that would lead to failure. For the situation shown
in Fig. 1, this would eliminate all potentially
troublesome points from the list of possible points
for face IFOUT, including point P.

(b) No faces belonging to any other enviroment are
considered for the face-crossing checks. Keeping
the faces that belong to the ‘other side’ of a thin
surface situation would render it impossible to
introduce new faces on any of the two sides. This
is because some of these faces will always be
close enough or crossing the newly formed
element. For this reason, only the faces belonging
to the present environment or no environment
(LFACR (IFACE =0) are kept for front-crossing
checks.

New (domain) points are always assigned to the
value LPOCR(IPOIN) =0. For the new faces,
LFACR (IFACE) is set to the maximum value of
LPOCR encountered over the three points IP1, IP2,
IP3 belonging to it:

LFACR(IFACE)=MAX(0, LPOCR(IP1),
LPOCR(IP2), LPOCR(IP3))

In this way, all faces touching the surfaces marked
as belonging to an environment are marked as
well. In order to grid as straightforwardly as possible
the regions immediately adjacent to troublesome
surfaces, the faces marked as belonging to an environ-
ment are given the highest priority for deletion from
the active front. For advancing front generators that
choose the face forming the smallest new element as
the one to be deleted next, the marked faces are
artificially set to a very small element size. In this way,
they are processed first.

3.3. Generation of Grids Suitable for
Navier—Stokes Calculations

The task of gridding complex geometries for the
simulation of flows using the Navier-Stokes or
Reynolds-averaged Navier—Stokes equations (RANS),

189

i.e. including the effects of viscosity and the associated
boundary or mixing layers, is encountered commonly
in engineering practice. For high Reynolds numbers,
the proper discretization of the very thin, yet important
boundary or mixing layers requires elements with
aspect ratios well in excess of 1:1000. This requirement
presents formidable difficulties to general, ‘black-box’
unstructured grid generators. These difficulties can be
grouped into two main categories:

(a) Amount of Manual Input In most unstructured
grid generators, the desired spatial distribution of
element size and shape is given by some form of
background grid or sources {6—8, 10]. This seems
natural within an adaptive context, as a given grid,
combined with a suitable error indicator/estimator,
can then be used as a background grid to generate an
even better grid for the problem at hand. Consider
now trying to generate from manual input a first grid
that achieves stretching ratios in excess of 1:1000. The
amount of background gridpoints or sources required
will be proportional to the curvature of the objects
immersed in the flowfield. This implies an enormous
amount of manual labour for general geometries,
rendering this approach impractical.

(b) Loss of Control Most unstructured grid genera-
tors introduce a point or element at a time, checking
the surrounding neighborhood for compatibilty.
These checks involve jacobians of elements and their
inverses, distance functions, and other geometrical
operations that involve multiple products of coordinate
differences. As the stretching ratio increases, round-off
errors can become a problem. To see this, consider
the mesh around a Boeing-747. The domain length
will be approximately 10°* m, which corresponds to
0(10) body lengths. The minimum element length
normal to the wing will have to be less than 0.01 mm
in order to capture accurately the boundary layer,
and 0.05 m in the other two directions. The maximum
element length in the farfield will be of the order of
20 m. For a mesh of this kind, the ratio of element
volumes is of the order of 3 x 10712, Although this is
well within reach of the 107 !®-accuracy of 64-bit
arithmetic, element distortion and surface singularities,
as well as loss of control of element shape can quickly
push this ratio to the limit.

Given these difficulties, it is not surprising that at
present, there does not exist a ‘black-box’ unstructured
(or structured, for that matter) grid generator that can
produce acceptable meshes with such high aspect ratio
elements. The most common way to generate meshes
suitable for Navier-Stokes calculations for complex
geometries is to employ a structured or semi-structured

190

mesh close to wetted surfaces or wakes [33-36]. This
‘Navier—-Stokes’ region mesh is then linked to an
outer unstructured grid that covers the ‘inviscid’
regions. In this way, the geometric complexity is
solved using unstructured grids and the physical
complexity of near-wall or wake regions is solved by
semi-structured grids. This approach has proven very
powerful in the past, as evidenced by many examples.
A recurring problem in all of these approaches has
been how to link the semi-structured mesh region with
the unstructured mesh region. Regions where such a
link becomes problematic are corners, edges or
surfaces with high curvature, as well as regions
between surfaces that are very close. In these regions,
the elements tend to be either too large or too small,
in some cases even folded, and there is usually a
sudden jump in element size when entering the
unstructured grid region. The design criteria for the
grid generation strategy pursued here may be sum-
marized as follows:

—The geometric flexibility of the unstructured grid
generator should not be compromised for Navier—
Stokes meshes. This implies using unstructured
grids for the surface discretization.

—The manual input required for a desired Navier—
Stokes mesh should be as low as that used for the
Euler case. In the present case, this requirement is
solved by specifying at the points of the background
grid the boundary layer thickness and the geometric
progression normal to the surface.

—The generation of the semi-structured grid should
be fast. Experience shows that usually more than
half of the elements of a typical Navier—Stokes
mesh are located in the boundary-layer regions.
This requirement is met by constructing the semi-
structured grids with the same normals as en-
countered on the surface (see Fig. 3), i.e. without
recurring to smoothing procedures as the semi-
structured mesh is advanced into the field [35, 36].

—The element size and shape should vary smoothly
when going from the semi-structured to the fully
unstructured mesh regions.

—The grid generation procedure should avoid all of
the problems typically associated with the genera-
tion of Navier—Stokes meshes for regions with high
surface curvature: negative or deformed elements
due to converging normals, and elements that get
too large due to diverging normals at the surface.
In order to circumvent these problems, the same
techniques which are used to achieve a smooth
matching of semi-structured and unstructured mesh
regions are used.

Given these design criteria, as well as the approaches

R. Lohner

used to meet them, the RANS grid generation
algorithm can be summarized as follows (see Fig. 3):

M1. Given a surface definition and a background
grid, generate a surface triangulation using an
unstructured grid generator.

M2. From the surface triangulation, obtain the
surface normals.

M3. Smooth the surface normals in several passes in
order to obtain a more uniform mesh in regions
with high surface curvature.

M4. Construct a semi-structured grid with the infor-
mation provided by the background grid and the
smoothed normals.

MS5. Examine each element in this semi-structured
region for size and shape; remove all elements
that do not meet certain specified quality criteria.

Mé6. Examine whether elements in this semi-structured
region cross each other; if so, keep the smaller
elements and remove the larger ones, until no
crossing occurs.

M7. Examine whether elements in this semi-structured
region cross boundaries; if so, remove the
crossing elements.

MS8. Mesh the as yet ‘empty’ regions of the computa-
tional domain using an unstructured grid gener-
ator in combination with the desired element size
and shape.

Strategies that are similar to the one outlined above
have recently been put forward by Pirzadeh [37, 38],
Miiller [19], and Morgan er al. [39], and others. In
the following, we consider the main ingredients
required for this technique in more detail.

3.3.1. Element Removal Criteria

A critical component of the RANS gridding algorithm
described above is the proper matching of semi-
structured and fully unstructured grids. This requires
good element removal criteria. The criteria to be
considered are: element size, element shape, element
overlap and element crossing of boundary faces.

(a) Element Size. The two main types of probiems
encountered in semi-structured grid regions that are
related to element size are elements that are either too
large or negative (folded). These problems originate
for different reasons. Elements that are too large may
occur if the surface normals diverge close to convex
surfaces of high curvature. The situation is shown
diagrammatically in Fig. 4. The volume of each
element in the semi-structured mesh region is compared
to the element volume desired by the user for the
particular location in space. Any element with a
volume greater than the one specified by the user is

Grid Generation via the Advancing Front Technique

191

Ty

—_—

LiLE

a) Define Surface and Spatial
Distribution of Element
Size/Shape

b) Compute Surface Normals

[& |

¢) Obtain Boundary Layer Mesh

d) Remove Bad Boundary Layer

Elements

e) Complete the Mesh Using
Advancing Front Generator

Fig. 3. Navier—Stokes meshing procedure.

large elements

——A
— 1 i 1
| N /
f”
ooy
—"”/
wall R -

Fig. 4. Element distortion close to a convex corner.

wall
distorted or

negative elements -
4 fx
\ q
| W

) N ¢ N
A 1\
1
)

_—

A

Fig. 5. Element distortion close to a concave corner.

marked for deletion. When concave surfaces exhibit
high curvature, the normals will tend to come together
or even cross, leading to elements with negative
jacobians. The situation is shown diagrammatically in
Fig. 5. As before, the element volumes are computed,
and elements with negative volumes are marked for
deletion. We have observed that typically the elements
adjacent to negative- elements tend to be highly
deformed. Therefore, we also remove all elements that
have points in common with negative elements.
Obviously, this one-pass procedure can be extended
to several passes, i.e. neighbors of neighbors, etc. Our
experience indicates, however, that one pass is suf-
ficient for most cases.

(b) Element Shape. The aim of a semi-structured
mesh close to a wall is to provide elements with very
small size normal to the wall and reasonable size along
the wall. Due to different meshing requirements along
the wall (e.g. corners, separation points, leading and
trailing edges for small element size, other regions with
larger element size), elements that are longer in the
direction normal to the wall than along the wall may
appear. The occurrence of such elements is shown
diagrammatically in Fig. 6. For the semi-structured
grids, the element and point numbering can be
assumed as known. Therefore a local element analysis

R. Léhner

can be performed to determine whether side-ratios are
consistent with boundary layer gridding. All elements
that do not satisfy this criterion are removed.

(¢) Overlapping Elements. Crossing or overlapping
elements occur in regions close to concave surfaces
with high curvature, or when the semi-structured grids
of two close objects overlap. Another possible scenario
is the overlap of the semi-structured grids of mixing
wakes. The main criterion employed is to keep the
smaller element whenever an overlap occurs. In this
way, the small elements close to surfaces are always
retained. Straightforward testing would result in
O(N,,) operations per element, where N,; denotes the
number of elements, leading to a total number of
operations of O(NZ). By using quad/octrees [7], or
other suitable data structures [23, 24], the number of
elements tested can be reduced significantly, leading
to a total number of operations of O(N,, log N,)).

(d) Elements Crossing Boundary Faces. In regions
where the distance between surfaces is very small, the
crossing of boundary faces by elements from the
semi-structured region is likely to occur. As this test
is performed after the element crossing tests are
conducted, the only boundaries that need to be treated
are those that have no semi-structured grid attached
to it. In order to detect if overlapping occurs, we loop
over the surface faces, seeing if any element crosses it.
As before, straightforward testing would result in an
expensive O(N,;- N;) procedure, where N; denotes the
number of boundary faces. Again, the use of quad/
octrees reduces the complexity to O(N; log N,)).

3.3.2. Smoothing of Surface Normals

Smoothing of surface normals is always advisable for
regions with high surface curvature, particularly
corners, ridges and intersections. In order to start the
smoothing process, initial point-normals RNORO, as
well as boundary conditions for point-normals must
be provided. The normal at any point is computed by

elements with wrong
aspect ratio

Fig. 6. Elements with undesired shape.

Grid Generation via the Advancing Front Technique

CASE PROCEDURE

surface 1N

median plane

a) Ridge Normal forced to be in median plane

wj

b) Corner Average of 3 surface normals (fixed)

/-weued surface
s}

2

wetted surface

c) Wetted/Non-Wetted Interface

averaging the normals of all faces touching it. The
choice of boundary conditions is crucial in order to
ensure that no negative elements are produced at
corners, ridges and intersections. Figure 7 shows a
number of possibilities. Note that the trailing edge of
wings (a particularly difficult case requiring particular
attention) falls under one of these categories. In each
smoothing pass, the point-normals are averaged in
the faces. Thereafter, the new face-normals are
assembled additively at the points, and normalized.
The complete smoothing procedure may require in
excess of 200 passes in order to converge. This slow
convergence may be speeded up considerably through
the use of conjugate gradient [40] or superstep [41,
42] acceleration procedures. Employing the latter
procedure, convergence is usually achieved in less
than 20 passes.

/
/

Normal forced to be in plane of non-wetted faces

Fig. 7. Boundary conditions for normals.

3.3.3. Point Distribution along Normals

Ideally, we would prefer to have normals that are
perpendicular to the surface in the immediate vicinity
of the body, and smoothed normals away from the
surface [43]. Such a blend may be accomplished by
using Hermitian polynomials. If we assume given:

—the points of surface x,;

—the boundary layer thickness J;

—the surface normals before and after smoothing
Ny, Ny

—a non-dimensional boundary layer point-distribu-
tion parameter ¢ of the form: ¢, = aé;, £, = 1;

then the following Hermitian cubic polynomial in ¢
will produce the desired effect:

X =Xq+&ng+ EQ2—&EMm —ng) (1)

194

surface side

d:min(d1, d2)

2
12: up 12: up
23: up 23: down
31: down 31: down

One can readily identify the linear parts &n;. In some
cases, a more pronounced (and beneficial) effect may
be produced by substituting for the higher-order
polynomials a new variable 7, i.e.

Q-9 :i>n2—m,
where, e.g. p = 0.5.

n=2=xr 2

3.3.4. Subdivision of Prisms into Tetrahedra

One of the aims of the RANS gridding technique is
to arrive at a single, smoothly varying mesh consisting
of tetrahedral elements only. Therefore, the prisms
formed by extruding the surface triangles along the
smoothed normals must be subdivided. This subdivi-
sion has to be performed in such a way that the
diagonals introduced at the rectangular faces of the
prisms match across prisms. The best possible diagonal
for each of these rectanguliar faces is chosen in order
to avoid large internal angles, as shown in Fig. 8. As
this choice is only dependent on the coordinates and
normals of the two end-points of a surface side,

R. Lohner

Fig. 8. Selection of diagonals when splitting prisms into tetrahedra.

Fig. 9. Splitting of prisms into tetrahedra.

compatibility across faces is assured. The problem is,
however, that a prism cannot be subdivided into
tetrahedra in any arbitrary way. Therefore, care has
to be taken when choosing these diagonals. Figure 9
illustrates the possible diagonals as the base sides of
the prism are traversed. One can see that in order to
obtain a combination of diagonals that can be
subdivided into tetrahedra, not all sides of the
triangular base have to be up—-down or down-up as
one traverses the sides. This implies that the sides of
the triangular base mesh have to be marked in such a
way that no such combination occurs. A proper set
of diagonals can be produced by a simple iterative
procedure described in [44]. When inverting the
side-diagonal orientation, those diagonals with the
smallest large internal angle are sampled first in order
to minimize the appearance of bad elements. Our
experience indicates that even for large surface grids
(>100 Ktria), the number of diagonals that require
inversion of side/diagonal orientation is very small
(<15).

Grid Generation via the Advancing Front Technique

3.4. Extension to Higher Order Triangles and
Tetrahedra

Once a grid of linear triangles or tetrahedra has been
obtained, it may be post-processed further in order to
obtain higher order elements. This is particularly
useful for structural mechanics problems, where linear
triangles and tetrahedra have been found to be
notoriously ‘stiff” elements [45]. Quadratic triangles
and tetrahedra offer an interesting alternative for
complex geometries, and have gained widespread use
and acceptance in recent years. For quadratic ele-
ments, all that is required is the introduction of new
points along the edges (or sides) of the original linear
element mesh. These new points are then introduced
in the connectivity matrix. Finally, the positions of
the new boundary points are corrected for curved
boundaries. Cubic or quartic elements require some
more work, as the new degrees of freedom can now
lie on element faces, or within the elements.

3.5. Extension to Quadrilateral and Hexahedral
Elements

The structural mechanics community has had a
historic preference for quadrilateral or hexahedral
elements. High-speed structural dynamics codes, such
as DYNA3D or NIKE3D [45, 47], have used these
types of elements almost exclusively. The generation
of quadrilateral elements on any 3-D surface may
either be accomplished ab initio using paving tech-
niques [11], or by first generating a mesh of triangles
that is then post-processed further. The second
approach proceeds through the following steps:

(a) generate a mesh of triangles with element size
twice as large as the final desired quadrilateral
element mesh;

(b) join as many triangles as possible into well-shaped
quadrilaterals;

(c) smooth the grid of triangles and quadrilaterals
obtained in the previous step;

(d) subdivide the elements further: triangles are
converted into three new quadrilaterals, while
quadrilaterals yield four new quadrilaterals;

(e) smooth the final all quadrilateral mesh.

The generation of hexahedral elements is a different
matter entirely. If the starting point is a grid of
tetrahedra, two ways to proceed are possible: (a) fusion
of tetrahedra into other polyhedra, or (b) fission of
tetrahedra into hexahedral elements.

We have tried both approaches. For the fusion
technique, the aim is to join tetrahedra into other

195

polyhedra (pyramids, prisms, hexahedra), in order to
arrive at grids that contain a minimum amount of
tetrahedra. This effort was not successful. The problem
is the proper transition of elements with quad-faces
to elements with triangular faces. Even though all
combinations were tried, it was found that the ‘yield’
of good hexahedra was below 5% for typical large
tetrahedra grids. The second approach is to subdivide
each tetrahedron into four hexahedra. While the
quality of such a hexahedra-only grid may appear
questionable, we have found no appreciable degrada-
tion by using them within DYNA3D [48].

4. Improvements in Speed

One of our aims is to be able to generate grids in
excess of a million elements in a matter of minutes on
a workstation. For this reason, grid generation speed
has been a major focus of research. The incorporation
of optimal search procedures, such as octrees and
linked lists, has enabled advancing front generators
to realize an operational complexity of O(N log N)
[7, 91. Further reductions in meshing times may
be achieved by avoidance of unnecessary search
overheads, global h-refinement, vectorization and
parallelization.

4.1. Reduction of Search Overheads

Our experience indicates that the number of close
points and faces found for checking purposes is far
too high. As an example, consider the search for close
points: there may be up to eight points inside an
octant, but of these only one may be close to the face
to be taken out. The idea is to filter out these ‘distant’
faces and points in order to avoid extra work
afterwards. While the search operations are difficult
to vectorize, these filtering operations lend themselves
to vectorization in a straightforward way, leading to
a considerable overall reduction in CPU requirements.
Moreover, filtering requires a modest amount of
operations as compared to the work required in
subsequent operations. The most important filtering
operations are:

—removal of points that are too far away;

—removal of points that are not visible from the face
to be removed from the front (these would form
elements with negative jacobians, see Fig. 10);

—removal of points that are not visible from the
visible adjacent faces to the face to be removed from
the front (these would form elements that cross
the front, see Fig. 11);

196

ifout ifout

Fig. 10. Removal of points not visible from the face to be removed.

ifout ifout

Fig. 11. Removal of -points not visible from the visible adjacent
faces.

el

ifout

1

ifout

Fig. 12. Removal of faces that cannot see the face to be removed.

—removal of faces that cannot see the face to be
removed (there is no need to check for these, see
Fig. 12).

4.2. Global h-refinement

While the basic advancing front algorithm is a
scalar algorithm, h-refinement can be completely
vectorized. Therefore, the grid generation process can
be made considerably faster by first generating a
coarser mesh that has all the desired variations of
element size and shape in space, and then refining
globally this first mesh with classic h-refinement [10].
Typical speed-ups achieved by using this approach are
1:6 to 1:7 for each level of global h-refinement.
Typical 3-D advancing front generators construct
grids at a rate of 12000 tetrahedra per minute on the
IBM-RISC/550 and 50000 tetrahedra per minute on
the CRAY-YMP. With one level of h-refinement, this
last rate is boosted to 190000 tetrahedra per minute.
This rate is essentially independent of grid-size, but
can decrease for very small grids.

R. Lohner
4.3. Vectorization

When generating large grids on traditional vector-
supercomputers, due care has to be taken to achieve
a high degree of vectorization. The advancing front
technique is a sequential procedure, in which elements
are introduced one at a time. This would seem to
preclude efficient vectorization. However, many of the
time-consuming search operations. such as the face-
crossing and filtering techniques, may be readily
vectorized. The author’s advancing front generator
achieves a speed-up of 1: 6 on the CRAY-YMP when
vectorization is enabled, indicating a fair degree of
vectorization.

4.4. Parallelization

As seen before, the advancing front technique is
essentially a scalar technique as far as the introduction
of elements is concerned. However, given a sufficient
distance between them, many elements may be
introduced at the same time. Given that the number
of operations required for the creation of a new
element can vary by orders of magnitude (very small
for a face on a convex front far away from any other
front faces, large in regions of collapsing fronts), only
MIMD machines can be contemplated for paralleliza-
tion [49, 50]. The background grid provides a useful
means to partition the domain to be gridded into
subdomains. Elements are generated in parallel
in each of these subregions. Thereafter, the regions
between the subdomains are also generated in parallel.
One processor, which acts as master, directs the
gridding of the subregions by allocating and transmit-
ting to each of the other ‘slave’ processors the active
faces and points of the front, as well as the background
grid elements corresponding to this subregion. Once
each of the other processors has completed the
meshing of its subregions, the information is trans-
mitted back to the master processor. Given that the
time required to generate a tetrahedral mesh is several
orders of magnitude larger than the transmission
times for the information required for it, this ‘card-
dealer’ hierarchy of processors works well for up to
several hundred processors. For parallel machines
with an even higher number of processors, intermediate
‘master-slave’ hierarchies can be employed. As the
number or processors grows beyond ten, it becomes
impossible to store the complete grid in a single
processor. In order to circumvent this limitation, a
‘distributed id’ data structure was introduced in [50].

Given that the typical user prefers coarse back-
ground grids, finer background grids that allow for
well-balanced subdivisions with uniform work loads

Grid Generation via the Advancing Front Technique

across them are generated via a pre-processor.
The details of this procedure, as well as further
enhancements of the parallel grid generation procedure
may be found in [50].

5. Improvement in User-Friendliness

Improvements in range of capabilities and speed
would be of little use unless similar enhancements
were achieved in user-friendliness. In this section, we
treat two areas where user-friendliness has been
improved significantly: surface definition from discrete
data, and the reduction of manual input to specify
arbitrary element size and shape distribution in space.

5.1. Surface Definition from Discrete Data

For complex configurations, the most man-hour
intensive part of the analysis process is the prepara-
tion of the surface data. Several reasons can be given
for this:

(a) The amount of CAD data can be very large.
Consider the complete external shape of an
airplane, car or ship, the cooling head of a
reciprocating engine block, or a complex stamp-
ing part. In all of these cases, the analyst will be
faced with hundreds, if not thousands of surface
patches that have to be merged, coordinated, and
possibly intersected and trimmed. This is a tedious
and thankless task that demands many man-
hours.

{b) The data used by one department of a company
may not even be compatible with the data used
by another department of the same company, let
alone those used by other companies. Even after
years of effort to standardize CAD input and
output formats, in practice the data sets stemming
from different CAD packages are not compatible.
In the United States in particular, many large
companies still have their own in-house CAD
system, which is incompatible with that of other
companies or the IGES standard.

(c) Even if the data can be read by another CAD
package, the splines, b-splines or other means of
defining the geometry may not be the same as that
of the originating package, prompting errors,
corrections, delays, and the associated increase in
analysis cost and uncertainty.

One possible solution to this dilemma is to do
away with CAD data in the form of continuous
functions, and to start from a cloud of points
that defines the surface of the domain to be gridded.

197

This first line of thought may be summarized as
follows:

(a) Any grid required for analysis does not consist of
infinitesimally small elements, but of a finite
amount of (finite) elements.

(b) A point lying on the surface is the only unique
item that can define unequivocally the surface of
the domain to be gridded (support points and the
functions used would do so too: the problem is
that in practice, we are only provided with the
support points, but not the functions).

(c) A point lying on the surface can easily be obtained
from any CAD-system.

(d) If the cloud of points is dense enough, whenever
a point is required for the grid used for analysis,
it can be obtained from the cloud of points.

A second line of thought is prompted by the observa-
tion that in many instances, the CAD model is either
not available, or is not the starting point for the
surface description. Examples for surface information
obtained discretely ab initio include: terrain data
gathered via remote sensing for climate predictions,
geological data gathered via seismic analysis or
probing for seepage and ground-water flow simula-
tions, digitization of clay models for the design of cars
and motorcycles, and CAT-scan data for biomedical
applications. In any of these cases, the surface is
defined by a point-set. :

Surface reconstruction from clouds of points has
been pursued for many years by computer scientists.
In some instances, remarkably complex structures
have been reconstructed [51-53].

The advancing front technique may also be used
to construct a surface triangulation from the cloud
of points. Starting from a point in the domain, an
initial side is built with the nearest neighbor. There-
after, a third point in the neighborhood is selected
to construct the first triangle. We now have an
initial front of three sides, as well as a surface
normal associated with each side given by the normal
to the triangle. The sides and surface normal are
oriented in such a way that the normal is pointing in
the direction of the reference points. If the three
reference points cannot be seen by the present face
and its normal, another set of three points is selected.
This initial face and its associated sides define the
initial front. We then proceed, for each subsequent
side, as follows:

T1. Select the smallest side of the current front as
the next side to be deleted from the front.

T2. Obtain all the points in the neighborhood of this
side. '

198

T3. Filter out the points that are not within the ‘cone
of visibility” of the side.
T4. IF: no points are left:
~mark the side as an edge-side;
—add it to the bottom of the side-list;
—proceed to the next side (GOTO T.1).
ELSE: '
—obtain all the sides in the neighborhood;
—order the points according to suitability;
—select the ‘best’ close point that does not cross
any of the current front-sides to form a new
triangular face;
~—add the new face to the surface grid;
—compute the surface normal for the new
face;
—update all front arrays;
ENDIF
T5. If any sides remain in the front: GOTO T.1.

This procedure works well for clouds of points
that are sufficiently fine [54]. We have found that
in order to avoid problems of non-uniqueness at
ridges and corners, it is important to start the
triangulation procedure using as the initial point
the one for which the surface curvature is minimal.
Procedures to define surface curvature for a discrete
set of points, as well as further refinements may be
found in [54].

5.2. Reduction of Input Requirements to Specify
Element Size

The specification of the desired element size and shape
in space has been a recurring problem for most grid
generators. This is because the requirements for
simplicity (low user input) and flexibility (complex
geometries) are conflicting. The earliest advancing
front grid generators employed a background grid to
specify the desired element size and shape in space.
This worked well for simple geometries, and was
particularly suited for adaptive remeshing procedures
[6, 28, 29]. For CAD-based surface descriptions,
the modified or finite quad- and octree techniques
provide an automatic way of refining the mesh in
regions of high surface curvature [20, 217. This works
well for problems that require a fine mesh in regions
of high surface curvature, and a coarser mesh away
from surfaces. While this is indeed the case for many
elliptic problems, a user may still wish to refine the
mesh in some arbitrary spatial region of space (e.g. a
heat-source, an oblique shock in supersonic flow, etc.).
Therefore, alternative ways to prescribe element size
and shape in space, that combine generality and low
user input, are required.

R. Lohner

Fig. 13. Line source.

5.2.1. Sources

A flexible way that combines low user input, arbitrary
but smoothly varying element size, and can be
associated with CAD data is to define sources. The
element size for an arbitrary location x in space is
given as a function of the closest distance to the source
r(x). Consider first the line source given by the points
X, X, shown in Fig. 13. The vector x can be
decomposed into a portion lying along the line, and
the normal to it. With the notation of Fig. 13, we have

X =X, + &g, +om 3)

The & can be obtained by scalar multiplication with
g,. and is given by:

X — X)°
= (1) 81 @)
£1°8¢
By delimiting the value of ¢ to be on the line:
¢’ = max(0, min(1, &)) &)

the distance between the point x and the closest point
on the line source is given by:

o(x) = |x —x; — &'gy (6)

Point sources can be constructed by collapsing the
line end-points into one. Consider next the surface
source element given by the points x,, X,, X3 shown
in Fig. 14. The vector x can be decomposed into a
portion lying in the plane given by the surface source
points, and the normal to it. With the notation of Fig.
14, we have

X =x; +{g +ng, +78; (7
where
X
g3 - gl gZ (8)
(g1 % gl

By using the contravariant vectors g',g? where
g;-g/ = 8/, we have
{(=1-¢—n 9

f—_—(x——xl)'gl, ;7=(x*x1)-g2,

|

Grid Generation via the Advancing Front Technique

X

X)

Fig. 14. Surface source.

The point x lies ‘on the surface’ if:
0<é&ni<l (10)

Whenever this condition is violated, the point x will
be closest to one of the edges, and the distance to the
surface is evaluated by checking the equivalent
line sources associated with the edges. If, on the other
hand, egn (10) is satisfied, the closest distance between
the surface and the point is given by:

o(x) = (1 = &—mxy + &x, +1x3 —x| (1)

As one can see, the number of operations required to
determine d4(x) is not considerable as long as one
pre-computes and stores the geometrical parameters
of the sources (g, g', etc.). In order to reduce the
internal complexity of a code, it is advisable to only
work with one type of source. Given that the most
general source is the surface source, line and point
sources are prescribed as surface sources, leaving a
small distance between the points to avoid numerical
problems (e.g. divisions by zero).

Having defined the distance from the source, the
next step is to select a function that is general yet
requires a minimum amount of input to define the
element size as a function of distance. Typically, the
user desires a small element size close to the source,
and a large element size away from it. Moreover, the
element size should, in many instances, be constant
(and small) in the vicinity r < r, of the source. Typical
cases that fall under this category are wings and
slender bodies or pipes for fluid flow problems. An
elegant way to satisfy these requirements is to work
with functions of the transformed variable

p = max <0, m) (12)

Ty

199

For obvious reasons, the parameter r; is called the
scaling length. Commonly used functions of p used to
define the element size in space are:

(a) Power laws: given by the expressions of the
form [10]

5(x) = 3o[1 + p7] (13)

-with the four input parameters dy, 1o, Fy, 7; typically,

1L0<y <20
(b) Exponential functions: which are of the form [18]

5(x) = 6, e (14)

with the four parameters &, g, 1, 7-

(c) Polynomial expressions: which avoid the high
cost of exponents and logarithms by employing
expressions of the form:

n
(x) = 50[1 +) aipi], (15)
i=1

with the n + 3 parameters dy, ry, 1y, a;. We have found
that in practice quadratic polynomials are sufficient,
ie.n=2

Give a set of m sources, the minimum element size
computed for each of them is taken whenever an
element is to be generated:

6(x) = min(é,,6,,...,9,,) (16)

Sources offer a convenient and general way to define
the desired element size in space. They can be
introduced interactively on a workstation with a
mouse-driven menu once the surface data is available.
They suffer from one major disadvantage: at every
instance, the generation parameters of all sources need
to be evaluated. For a distance distribution given by
eqns (12)—(16), it is very difficult to ‘localize’ the
sources in space in order to filter out the relevant ones.
On the other hand, the evaluation of the minimum
distance obtained over the sources may be vectorized
in a straightforward way. Nevertheless, a high number
of sources (N, > 100) will have a marked impact on
CPU times, even on a vector-machine.

5.2.2. Element Size Attached to CAD DATA

For problems that require gridding complex geom-
etries, the specification of proper element sizes can
become a tedious process. Conventional background
grids would involve many tetrahedra, whose genera-
tion is a labour-intensive, tedious task. Point, line, or
surface sources are not always appropriate either.
Curved ‘ridges’ between surface patches, as sketched
in Fig. 15, may require many line sources. Similarly,

‘the specification of gridding parameters for surfaces

with high curvature may require many surface sources.

200

Surface Patch 2

R. Léhner

Ridge Where Small Elements Are Required

Surface Patch 1

The net effect is that for complex geometries one is
faced with excessive labour costs (background grids,
many sources), and/or CPU requirements during
mesh generation (many sources).

A better way to address these problems is to attach
element size (or other gridding parameters) directly
to CAD data. For many problems, the smallest
elements are required close to the boundary. There-
fore. if the element size for the points of the current
front is stored, the next element size may be obtained
by multiplying it by a user-specified increase factor c;.
The element size for each new point introduced is then
taken as the minimum obtained from the background
grid Jy,, the sources J,, and the minimum of the point
sizes corresponding to the face being deleted, multiplied
by a user-specified increase factor ¢;:

0 = min(y,, d;, ¢; min(dy,, dy, 0¢)) a7

Typical values for ¢; are 1.0 < ¢; < 2.0. The first value
yields a mesh of uniform element size, whereas the
latter gives rise to grids with elements that grow
rapidly in size away from the surface. Specifying or
attaching element sizes to CAD data can lead to
incompatibilities if surfaces are close to each other.
For example, in the situation shown in Fig. 16,

_Line 1

——Line With Specified

Element Size
Z_ Line 2

Fig. 16. Potential problems with incompatible sizes.

Fig. 15. Element size attached to CAD data.

specifying a small distance for line L1 without
proper modification of the distance parameter for line
L2 can lead to size incompatibilities and badly
shaped elements. This is because this type of specifica-
tion of element size is “hyperbolic’ by nature, starting
from the surfaces and marching blindly into the
domain.

6. Examples
6.1. World Trade Center

In order to show the current use of large-scale
tetrahedral grids for complex geometries we consider
one of the floors of the World Trade Center. This
particular configuration included approximately 280
cars, in excess of 100 columns, ramps, inner walls, etc.
Some of the data were merged from AutoCad (e.g.
columns, ramps), some from architectural drawings
(e.g. parking positions, walls), and some from measure-
ments (€.g. cars, beam widths). What is typical for
real-life applications of this kind is the convergence of
data from several sources (CAD, drawings, models,
measurements) that the CFD user must merge and
‘trim’. Note that CAD tools by themselves will not
solve this task. Rather, specialized software tools that
can read CAD data, have some CAD-like functionality
to merge and construct data, and impose the proper
boundary conditions are required. The preparation of
the data for this configuration required 1 week. The
surface definition data is shown in Fig. 17(a). The grid
consisted of approximately 18 Mtet elements, with
600 ktria surface faces. Although this number of
elements at first sight would appear as excessively
high, it was the minimum required to reproduce
faithfully the geometry and physics under considera-
tion. A simulation was carried out to assess the
damage due to blasts. A snapshot of one such run is
shown in Fig. 17(b).

201

(b) blast simulation (pressure contours).

>

Loty

SRR

)

b
Fig. 17. World Trade Center B2 Level: (a) surface definition (600 ktria);

(

Grid Generation via the Advancing Front Technique

R. Léhner

SN
OONAXX

i
)
i
/)

w
ot
ks
0

K}
{
o

]
Y
i

X
il

:
AAVAV

A
V)
V
/\
I

i
)
1/

FAVAV.AY <SS
IR
VAU AVaVAN
SN

\)
\/
9

S
\/
e

Fig. 18. Sails: (a) surface definition; (b) surface mesh; (c) surface mesh (close-up); (d) surface pressure.

202
c)
‘u‘,}s".‘;év A‘ /
AN ‘é,"‘ "
LN S, AN
ﬁi‘f"@'g"“‘q\"
YRR PINIAY —
NS
6.2. Sails

This example illustrates an application that requires a
volumetric grid around thin or crossing surfaces. The
configuration is shown in Fig. 18(a). Note the
inclination of the sails, as well as the very narrow gap
between the front and back sails. The sails, which
measure approximately 30 m, were modeled as having
a thickness of 1 mm. For all practical purposes, this
is equivalent to a vanishing thickess. A background
grid of only five elements (a hexahedron split into
tetrahedra) enclosing the domain was used to prescribe
linear variation of element size in the vertical direction,
with dy = 10 m and ; = 30 m. In addition, two line
sources and six surface sources were employed to
concentrate smaller elements on the sails and between
them. Furthermore, element size attached to CAD
data was used for the sails. Two views of the surface
mesh are shown in Figs 18(b, c). As before, the surfaces
of the sails cross. The final mesh consisted of
NELEM =200277 elements and NPOIN=20383
points. The contours of the surface pressures obtained
on this mesh for an inviscid flow simulation are shown
in Fig. 18(d).

6.3. Chip

In this particular instance, the proper discretization of
the solid domain inside a chip, as well as the
surrounding fluid medium, was required. The definition
of the surfaces is shown in Fig. 19(a). The complete
domain had five different materials, including the
fluid. In this instance, no sources were specified.
Instead, the option to attach element size directly to
CAD data was used extensively. Most of the chip
surfaces had an element size attached to them. For
the fluid region, a Navier—Stokes grid was required.
The surface of the grid, which consisted of approxi-
mately 1.5 Mtet elements, is shown in Fig. 19(b).
Results from an incompressible flow solution with
conjugate heat transfer at a Reynolds number of
Re = 1000 based on the diameter of the chip are
included in Fig. 19(c) to show that these grids can
indeed be used for industrial applications. Due to the
ability to attach grid-size directly to CAD data, the
pre-processing time was kept to a minimum. Less than
4h (one morning) were required to input all the
surface defining information, the grid generation
parameters, and to obtain the mesh.

Grid Generation via the Advancing Front Technique

203

Fig. 19. (a).

Fig. 19. (b).

6.4. Submarine Surface

For this case, an all-quad surface discretization for
the hull of a generic submarine configuration was
required for structural mechanics applications. The
surface definition is shown in Fig. 20(a). A total
of 24 line sources were used to specify the desired
element size in space. An initial surface grid with
approximately 24000 triangular elements was built.

Thereafter, as many elements as possible were fused
into ‘good’ quadrilaterals. This resulted in approxi-
mately 11000 quads and 2000 remaining triangles.
The final all-quad mesh, obtained after global
h-refinement, had approximately 50000 elements.
The generation process is shown in Figs 20(b-d).
Close-ups of the final mesh, shown in Figs 20(e—f),
indicate that high quality surface grids may be
obtained in this way.

R. Léhner

Fig. 20. (2)
Fig. 20. (b).

AV

WAYARS R VAN

A R
SEESEETR

definition; (b) surface mesh; (¢) simulation

Fig. 19. Chip simulation: (a) surface
results (Re = 1000, streamlines).

{c)

204

Grid Generation via the Advancing Front Technique

1V LS SS
e I e
e SISO
ot <S “
SO0

6.5. Impacting Rod

Figure 21 shows the comparison of two runs conducted
by using (a) a conventional hexahedral grid and (b) a
hexahedral grid obtained by subdivision of tetrahedra
with DYNA3D. Observe that the results are very
similar, but that the mesh used for the ‘brick-from-tet’
mesh is actually finer. Given that a major portion of
typical analysis man-hours is devoted to grid genera-
tion, we consider these results as very encouraging.
Given the flexibility and degree of automation that
tetrahedral grid generators have achieved, the splitting
approach seems an attractive alternative to other

Fig. 20. (¢).
S PO
RSN
Sodesfeunly
ol lentle:
s%a ettt
SOSS 0SS Y
Fig. 20. (d).

205

hexahedral grid generation schemes for geometrically
complex problem.

6.6. Definition of a Die Stamping Surface

This example shows how input preparation times may
be reduced by working directly from discrete data
instead of CAD data. The original CAD data set had
over 500 surface patches, many of them overlapping
and in need of trimming. The cloud of points, obtained
from a digitization of the actual part, had 4398 points
and is shown in Fig. 22(a). The final surface obtained
is depicted in Fig. 22(b). Observe the presence of

oy —
3 3
e &
> -

z25=
2

Ly

EEEEE)
L2X 2277
TR LT

2L
T
7775

Siizazs,
%

2
o

r2 e

RO
FEEr

SESETS
e e

o
8%

23
:0
[\

>

=
-

T LA
%
sies
S

Y
<

>
o5

1

<\

2B
o
L5

Fig. 20, (o),

OB

Fig. 20, Generic submaripe configuration: (a)
surface deﬁnition; (b) surface mesh (all-tria);
(c) surface mesh (mjxed quad-tria); (d) surface
mesh (ail-quad); (e close-up of taj] region;
(f) close-up of taji region.

Grid Generation via the Advancing Front Technique

elts= 972
nodes= 1369
eps-mx = 2.835
Del-R = 0.3607
\ Del-H = 1.086

LT
11

ccsene s

aneaOBORRsERNE Sated
PP T T X L L S ddid

ridges at the edge of the part. In some cases, the angles
between adjacent faces exceeded 60°. The surface
triangulation for this cloud of points took less than
30s on the IBM/RS¢000-550. The example clearly
demonstrates the possible advantages of surface
descriptions via discrete point sets. Trimming and
combining over 500 surfaces is a tedious and time-

207

elts= 6132
nodes= 7551
eps-mx = 3.097
-Del-R = 0.3943
Del-H = 1.093

contour values
L"".'.-;. A= B,.B0E+QB
e

SRR B- 4.20E-01

oNEe

RIS C~ 8.89E-81
D {.2BE+28
E= 1{.6BE+88
F= 2,88E+00

G- 2.49E+00
He 2.80E+00

Fig. 22. (a).

consuming effort, which can be reduced drastically as
shown here.

6.7. Parallel Grid Generation of a Double Missile
Configuration

The mesh surrounding a double missile configuration
in a bay was generated on the Intel Touchstone Delta

208

R. Léhner

AVARZANNA
YAVAVATAVAW A WA VZa

ATARLUVAATAY, VAVAVZAN

®)

Fig. 22. Surface reconstruction for a die
stamping part: (a) cloud of points;
(b) wireframe of final surface.

Background Mesh

Surface of Final Assembled Mesh

Mesh After Subdomain Generation

Finai Mesh

Fig. 23. Parallel grid generation of a double missile configuration.

Grid Generation via the Advancing Front Technique

machine using 34 processors. The configuration is
shown in Fig. 23. The partition of the background
grid, as well as the elements obtained after the first
pass over the processors, are shown in Fig. 23. After
this stage, all the inter-subdomains regions are also
meshed in parallel. The final mesh, consisting of 91 000
elements, is shown in Fig. 23.

7. Conclusions

This paper has summarized recent extensions and
improvements to the advancing front grid generation
technique. These improvements have considered the
range of applicability, speed. and user-friendliness of
this fast maturing technique. The range of applicability
was enlarged by the ability to produce volumetric
grids around thin surfaces (such as shells, membranes,
fabrics, or surfaces with cusps), the generation of high
aspect ratio grids for Navier-Stokes applications, the
generation of higher order triangular and tetrahedral
elements, and the generation of quadrilateral and
hexahedral elements. Speed improvements were the
result of reduced search overheads, as well as vector-
ization and parallelization. User-friendliness was
enhanced by the development of direct gridding from
discrete data, as well as simpler ways of specifying the
desired element size and shape in space. The numerous
examples included clearly demonstrate the versatility
and maturity that advancing front grid generators
have achieved. Further improvements in all of these
areas may result from ongoing research. In particular,
mesh smoothing and optimization [55] and the
seamless integration to CAD systems represents topics
that were not treated here but deserve increased
attention in the future.

Acknowledgments

The author would like to acknowledge the help of Drs J. D. Baum
and H. Luo for the World Trade Center configuration. as well as
Drs D. Pelessone and Ch. Charman for the DYNA3D runs with
quadrilateral and hexahedral grids. Dr A. Shostko coded the
parallel grid generation procedure in 3-D, and his many innovations
and improvements are gratefully acknowledged.

The work described on grid generation would have been
impossible without the generous support of AFOSR and DNA over
the years, as well as [BM and CRAY Research.

References

I. Baum, J.D.; Lohner, R. (1991) Numerical simulation of shock
interaction with a modern main battlefield tank, AIAA-91-1666

12.

14.

15.

16.

17.

18.

19.

20.

21.

22.

209

. Baum, J.D,; Luo, H.; Lohner, R. (1993) Numerical simulation

of a blast inside a Boeing 747; AIAA-93-3091

. Baum, J.D.; Luo, H.; Léhner, R. (1995) Numerical simulation

of a blast inside the World Trade Center, AIAA-95-3091

. van Phai, N. (1982) Automatic mesh generation with tetrahedron

elements, International Journal for Numerical Methods in
Engineering, 18, 237-289)

. Lo, S.H. (1985) A new mesh generation scheme for arbitrary

planar domains, International Journal for Numerical Methods
in Engineering, 21, 1403-1426

. Peraire, J.; Vahdati, M.; Morgan, K,; Zienkiewicz, O.C. (1987)

Adaptive remeshing for compressible flow computations.
Journal of Computer Physics, 72, 449-466

. Lohner, R. (1988) Some useful data structures for the genera-

tion of unstructured grids, Communications in Applied Numeri-
cal Methods, 4, 123-135

. Lohner, R.; Parikh, P. (1988) Three-dimensional grid genera-

tion by the advancing front method, International Journal for
Numerical Methods for Fluids, 8, 1135-1149

. Peraire, J; Morgan, K.; Peiro, J. (1990) Unstructured finite

element mesh generation and adaptive procedures for CFD.
AGARD-CP-46, 18

. Lohner, R. (1992) Finite elements in CFD: grid generation.

adaptivity and parallelization, Chapter 8 in AGARD Rep. 787.
Proceedings Special Course on Unstructured Grid Methods for
Advection Dominated Flows, VKI, Belgium, May and NASA
Ames, Moffet Field, CA, September

- Blacker, T.D,; Stephenson, M.B. (1992) Paving: a new approach

to automated quadrilateral mesh generation, International
Journal for Numerical Methods in Engineering, 32, 811-847
Blacker, T.D.; Meyers, RJ. (1993) Seams and wedges in
plastering: a 3-D hexahedral mesh generation algorithm.
Engineering with Computers, 9, 83-93

. Baker, T.J. (1987) Three-dimensional mesh generation by

triangulation of arbitrary point sets, ATAA-CP-87-1124, &th
CFD Conf,, Hawaii

Baker, T.J. (1989) Developments and trends in three-dimen-
sional mesh generation. Applied Numerical Mathematics 5,
275-304

Holmes, D.G.; Snyder, D.D. (1988) The generation of unstruc-
tured triangular meshes using Delaunay triangulation, Numerical
Grid Generation in Computational Fluid Dynamics (Sengupta
et al., Editors), Pineridge Press, Swansea, 643-652

Mavriplis, D. (1990) Euler and Navier-Stokes computations
for two-dimensional geometries using unstructured meshes,
ICASE Rep. 90-3

Weatherill, N.P. (1992) Delaunay triangulation in computa-
tional fluid dynamics, Computer Mathematics Applications 24
5/6, 129-150

Weatherill, N.P.; Hassan, O. (1994) Efficient three-dimensional
Delaunay triangulation with automatic point creation and
imposed boundary constraints, International Journal for
Numerical Methods in Engineering, 37, 2005~2039

Miiller, J.-D. (1993) Proven angular bounds and stretched
triangulations with the frontal Delaunay method, AIAA-93-
3347-CP

Yerry, M.A: Shepard, M.S. (1984) Automatic three-dimensional
mesh generation by the modified-octree technique, International
Journal for Numerical Methods in Engineering, 20, 1965-1990
Shepard, M.S.; Georges, M.K. (1991) Automatic three-
dimensional mesh generation by the finite octree technigue,
International Journal for Numerical Methods in Enginering,
32, 709-749

Jin, H; Tanner, R.I. (1993) Generation of unstructured
tetrahedral meshes by the advancing front technique, Inter-

210

23.

24.

25.

27.

28.

29.

30.
3L

32

33.

34.

35.

36.

37.

38.

39.

national Journal for Numerical Methods in Engineering 36,
1805-1823

Frykestig. J. (1990) Advancing front mesh generation techniques
with application to the finite element method, Pub. 94:10,
Chalmers University of Technology, Géteborg, Sweden
Bonet, J.: Peraire, J. (1991) An alternate digital tree algorithm
for geometric searching and intersection problems, International
Journal for Numerical Methods in Engineering, 31, 1-17.
George, P.L. (1991) Automatic Mesh Generation, John Wiley,
New York

. Luo, H.; Baum, J.D.; Léhner, R. (1994) Edge-based finite

element scheme for the Euler equations, AIAA Journal 32, 6,
1183-1190

Mestreau, E.; Léhner, R. (1994) Numerical simulation of chip
cooling via large-scale FEM simulations, CSI-GMU
Preprint

Léhner, R. (1989) Adaptive remeshing for transient problems,
Computer Methods in Applied Mechanics and Engineering, 75,
195-214

Léhner, R. (1990) Three dimensional fluid-structure interaction
using a finite element solver and adaptive remeshing, Computer
Systems in Engineering, 1, 2-4, 257-272

Tilch, R. (1991) PhD Thesis, CERFACS, Toulouse, France
Peraire, J.; Peiro, J.; Morgan. K. (1992) Adaptive remeshing for
three-dimensional compressible flow computations, Journal of
Computer Physics 103, 269-285

Rank, E; Schweingruber, M; Sommer, M. (1993) Adaptive
mesh generation and transformation of triangular to quadri-
lateral meshes, Communications in Applied Numerical Methods,
9, 121-129

Nakahashi, K. (1987) FDM-FEM zonal approach for viscous
flow computations over multiple bodies, AIAA-87-0604
Nakahashi, K.; Obayashi. S. (1987) Viscous flow computations
using a composite grid, AIAA-CP-87-1128, 8th CFD Conf,,
Hawaii

Nakahashi, K. (1988) Optimum spacing control of the marching
grid generation, AIAA-88-0515

Kallinderis, Y.; Ward, S. (1992) Prismatic grid generation with
an efficient algebraic method for aircraft configurations,
ATAA-92-2721

Pirzadeh. S. (1993) Unstructured viscous grid generation by
advancing-layers method, ATAA-93-3453

Pirzadeh, S. (1994) Viscous unstructured three-dimensional
grids by the advancing-layers method, AIAA-94-0417
Morgan, K.; Probert, J.; Peraire, J. (1993) Line relaxation
methods for the solution of two-dimensional and three-
dimensional compressible flows, AIAA-93-3366

40.

41.

42,

43.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

R. Léhner

Hestenes, M.; Stiefel, E. (1952) Methods of conjugate gradients
for solving linear systems, Journal of National Bureau of
Standards, 49, 409-436

Gentzsch, W.; Schliiter, A. (1978) Uber ein Einschrittverfahren
mit zyklischer Schrittweitendnderung zur Lésung parabolischer
Differentialgleichungen, ZAMM, 58, T415-T416

Léhner, R,; Morgan, K. (1987) An unstructured multigrid
method for elliptic problems, International Journal for Numer-
ical Methods in Engineering, 24, 101-115

Marchant, M.J; Weatherill, N.P. (1993) The construction of
nearly orthogonal multiblock grids for compressible flow
simulation, Communications in Applied Numerical Methods,
9, 567-578

. Lohner, R. (1993) Matching semi-structured and unstructured

grids for Navier—Stokes calculations, AIAA-93-3348-CP
Zienkiewicz, O.C.; Taylor, R. (1988) The Finite Element
Method, McGraw Hill, New York

Goudreau, G.L,; Hallquist, J.O. (1982) Recent developments in
large-scale finite element lagrangean hydrocode technology,
Computer Methods in Applied Mechanics and Engineering, 33,
725-757 ‘

Whirley, R.G.; Hallquist, J.O. (1991) DYNA3D, a nonlinear
explicit, three-dimensional finite element code for solid and
structural mechanics—User Manual. UCRL-MA-107254
Léhner, R; Yang, C.; Cebral, J; Baum, J,; Luo, H,; Charman,
C.; Pelessone, D. (1994) A loose coupling algorithm for
fluid-structure interaction simulations; Proceedings 8th Annual
Idaho National Engineering Lab. Comp. Symp. 10-3, October
Léhner, R;; Camberos, J; Merriam, M. (1992) Parallel
unstructured grid generation, Computer Methods in Applied
Mechanics and Engineering, 95, 343-357

Shotsko, A.; Lohner, R. (1994) Three-dimensional parallel
unstructured grid generation, AIAA-94-0418

Choi, BK,; Chin, H.Y; Loon, Y.L; Lee, J.W. (1988) Triangula-
tion of scattered data in 3D space, Computer Aided Geometric
Design, 20, 239-248

Hoppe, H.; DeRose, T.; Duchamp, T.; McDonald, J.; Stuetzle,
W. (1992) Surface reconstruction from unorganized points,
Computer Graphics 26, 2, 71-78

Hoppe, H.; DeRose, T.; Duchamp, T.: McDonald, J.; Stuetzle.
W. (1993) Mesh optimization, Proceedings Computer Graphics
Annual Conference, 19-26

Lohner, R. (1994) Surface reconstruction from clouds of points,
CSI-GMU Preprint

Cabello, J.; Lonher, R.; Jacquotte, O-P. (1992) A variational
method for the optimization of two- and three-dimensional
unstructured meshes, AIAA-92-0450

